Posts Tagged ‘“wireless”’

Mythology, Belief, Analytics, & Behavior

MIT_Building_10_and_the_Great_Dome,_Cambridge_MAI’m at loose ends after graduating. The Dean for Student Affairs, whom I’ve gotten to know through a year of complicated political and educational advocacy, wants to know more about MIT‘s nascent pass/fail experiment, under which first-year students receive written rather than graded evaluations of their work.

MIT being MIT, “know more” means data: the Dean wants quantitative analysis of patterns in the evaluations. I’m hired to read a semester’s worth, assign each a “Usefulness” score and a “Positiveness” score, and then summarize the results statistically.

Two surprises. First, Usefulness turns out to be much higher than anyone had expected–mostly because evaluations contain lots of “here’s what you can do to improve” advice, rather than lots of terse “you would have gotten a B+” comments, as had been predicted. Second, Positiveness distributes remarkably as grades had for the pre-pass/fail cohort, rather than skewing higher, as had been predicted. Even so, many faculty continue to believe both predictions (that is, they think written evaluations are both generally useless and inappropriately positive).

20120502161716-1_0A byproduct of the assignment is my first exposure to MIT’s glass-house computer facility, an IBM 360 located in the then-new Building 39. In due course I learn that Jay Forrester, an MIT faculty member, had patented the use of 3-D arrays of magnetic cores for computer memory (the read-before-write use of cores, which enabled Forrester’s breakthrough, had been patented by An Wang, another faculty member, of the eponymous calculators and word processors). IBM bought Wang’s patent, but not Forrester’s, and after protracted legal action eventually settled with Forrester in 1964 for $13-million.

According to MIT mythology, under the Institute’s intellectual-property policy half of the settlement came to the Institute, and that money built Building 39. Only later do I wonder whether the Forrester/IBM/39 mythology is true. But not for long: never let truth stand in the way of a good story.

Not just because mythology often involves memorable, simple stories, belief in mythology is durable. This is important because belief so heavily drives behavior. That belief resists even data-driven contradiction–data analysis rarely yields memorable, simple stories–is one reason analytics so often prove curiously ineffective in modifying institutional behavior.

Two examples, both involving the messy question of copyright infringement by students and what, if anything, campuses should do about it.

44%

laurelI’m having lunch with a very smart, experienced, and impressive senior officer from an entertainment-industry association, whom I’ll call Stan. The only reason universities invest heavily in campus networks, Stan tells me, is to enable students to download and share ever more copyright-infringing movies, TV shows, and music. That’s why campuses remain major distributors of “pirated” entertainment, he says, and therefore why it’s appropriate to subject higher education generally to regulations and sanctions such as the “peer to peer” regulations from the 2008 Higher Education Opportunity Act.

That Stan believes this results partly from a rhetorical problem with high-performance networks, such as the research networks within and interconnecting colleges and universities. High-performance networks–even those used by broadcasters–usually are engineered to cope with peak loads. Since peaks are occasional, most of the time most network capacity goes unused. If one doesn’t understand this–as Stan doesn’t–then one assumes that the “unused” capacity is in fact being used, but for purposes not being disclosed.

And, as it happens, there’s mythology to fill in the gap: According to a 2005 MPAA study, Stan tells me, higher education accounts for almost half of all copyright infringement. So MPAA, and therefore Stan, knows what campuses aren’t telling us: they’re upgrading campus networks to enable infringement.

But Stan is wrong. There are two big problems with his belief.

MPAAFirst, shortly after MPAA asserted, both publicly and in letters to campus presidents, that 44% of all copyright infringement emanates from college campuses, which is where Stan’s “almost half” comes from, MPAA learned that its data contractor had made a huge arithmetic error. The correct estimate should have been more like 10-15%. But the corrected estimate was never publicized as extensively as the erroneous one: the errors that statisticians make live after them; the corrections are oft interred with their bones.

Second, if Stan’s belief is correct, then there should be little difference among campuses in the incidence of copyright infringement, at least among campuses with research-capable networking. Yet this isn’t the case. As I’ve found researching three years of data on the question, the distribution of detected infringement is highly skewed. Most campuses are responsible for little or no distribution of infringing material, presumably because they’re using Packetlogic, Palo Alto firewalls, or similar technologies to manage traffic. Conversely, a few campuses account for the lion’s share of detected infringement.

So there are ample data and analytics contradicting Stan’s belief, and none supporting it. But his belief persists, and colors how he engages the issues.

Targeting

imagesOKVW44NDI’m having dinner with the CIO from an eminent research university; I’ll call her Samantha, and her campus Helium (the same name it has in the infringement-data post I cited above). We’re having dinner just as I’m completing my 2013 study, in which Helium has surpassed Hydrogen as the largest campus distributor of copyright-infringing movies, TV shows, and music.

In fact, Helium accounts for 7% of all detected infringement from the 5,000 degree-granting colleges and universities in the United States. I’m thinking that Samantha will want to know this, that she will try to figure out what Helium is doing–or not doing–to stand out as such a sore thumb among peer campuses, and perhaps make some policy or practice changes to bring Helium into closer alignment.

But no: Samantha explains to me that the data are entirely inaccurate. Most of the infringement notices Helium receives are duplicates, she tells me, and in any case the only reason Helium receives so many is that the entertainment industry intentionally targets Helium in its detection and notification processes. Since the data are wrong, she says, there’s no need to change anything at Helium.

I offer to share detailed data with Helium’s network-security staff so that they can look more closely at the issue, but Samantha declines the offer. Nothing changes, and in 2014 Helium is again one of the top recipients of infringement notices (although Hydrogen regains the lead it had held in 2012).

The data Samantha declines to see tell an interesting story, though. The vast majority of Helium’s notices, it turns out, are associated with eight IP addresses. That is, each of those eight IP addresses is cited in hundreds of notices, which may account for Samantha’s comment about “duplicates”. Here’s what’s interesting: the eight addresses are consecutive, and they each account for about the same number of notices. That suggests technology at work, not individuals.

image0021083244899217As in Stan’s case, it helps to know something about how campus networks work. Lots of traffic distributed evenly across a small number of IP addresses sounds an awful lot like load balancing, so perhaps those addresses are the front end to some large group of users. “Front end to some large group of users” sounds like an internal network using Network Address Translation (NAT) for its external connections.

NAT issues numerous internal IP addresses to users, and then technologically translates those internal addresses traceably into a much smaller set of external addresses. Most campuses use NAT to conserve their limited allocation of external IP addresses, especially for their campus wireless networks. NAT logs, if kept properly, enable campuses to trace connections from insiders to outside and vice versa, and so to resolve those apparent “duplicates”.

So although it’s true that there are lots of duplicate IP addresses among the notices Helium receives, this probably stems from Helium’s use of NAT on its campus wireless. Helium’s data are not incorrect. If Helium were to manage NAT properly, it could figure out where the infringement is coming from, and address it.

Samantha’s belief that copyright holders target specific campuses, like Stan’s that campuses expand networks to encourage infringement, has a source–in this case, a presentation some years back from an industry association to a group of IT staff from a score of research universities. (I attended this session.) Back then, we learned, the association did target campuses, not out of animus, but simply as a data-collection mechanism. The association would choose a campus, look for infringing material being published from the campus’s network, send notices, and then move on to another campus.

utorrent-facebook-mark-850-transparentSince then, however, the industry had changed its methodology, in large part because the BitTorrent protocol replaced earlier ones as the principal medium for download-based infringement. Because of how BitTorrent works, the industry’s methodology shifted from searching particular networks to searching BitTorrent indexes for particularly popular titles and then seeing which networks were making those titles available.

I spent lots of time recently with the industry’s contractors looking closely at that methodology. It appears to treat campus networks equivalently to each other and to commercial networks, and so it’s unlikely that Helium was being targeted as Samantha asserted.

If Samantha had taken the infringement data to her security staff, they probably would have discovered the same thing I did, and either used NAT data to identify offenders, or perhaps to justify policy changes for the wireless network. Same goes for exploring the methodology. But instead Samantha relied on her belief that the data were incorrect and/or targeted

Promoting Analytic Effectiveness

Because of Stan’s and Samantha’s belief in mythology, their organizations’ behavior remains largely uninformed by analytics and data.

decision-treeA key tenet in decision analysis holds that information has no value (other than the intrinsic value of knowledge) unless the decisions an individual or an institution have before them will turn out differently depending on the information. That is, unless decisions depend on the results of data analysis, it’s not worth collecting or analyzing data.

Colleges, universities, and other academic institutions have difficulty accepting this, since the intrinsic value of information is central to their existence. But what’s valuable intrinsically isn’t necessarily valuable operationally.

Generic praise for “data-based decision making” or “analytics” won’t change this. Neither will post-hoc documentation that decisions are consistent with data. Rather, what we need are good, simple stories that will help mythology evolve: case studies of how colleges and universities have successfully and prospectively used data analysis to change their behavior for the better. Simply using data analysis doesn’t suffice, and neither does better behavior: we need stories that vividly connect the two.

Ironically, the best way to combat mythology is with–wait for it–mythology…

Revisiting IT Policy #1: Network Neutrality

The last time I wrote about network neutrality, higher education was deeply involved in the debate, especially through the Association of Research Libraries and EDUCAUSE, whose policy group I then headed. We supported a proposal by the then Federal Communications Commission (FCC) chairman, Julius Genachowski, to require public non-managed last-mile networks to transmit end-user Internet traffic neutrally.

We worried that otherwise those networks might favor commercial over intellectual content, and so make it difficult for off-campus students to access course, library, and other campus content, and for campus entities such as libraries to access content on other campuses or in central shared repositories. (The American Library Association had similar worries on behalf of public libraries and their patrons.) Almost as a footnote, we opposed so-called “paid prioritization”, an ill-defined concept, rarely implemented, but now reborn as “Internet fast lanes”.

Although courts overturned the FCC on neutrality, for the most part its key principle has held: traffic should flow across the Internet without regard for its source, its destination, or its content.

But the paid-prioritization footnote is pushing its way back into the main text. It’s doing so in a particularly arcane way, but one that may have serious implications for higher education. Understanding this requires some definitions. After addressing those (as Steve Worona points out, an excellent Wired article has even more on how the Internet, peering, and content delivery networks work), I’ll  turn to current issues and higher education’s interests.

What Is Network Neutrality?

To be “neutral”, in the FCC’s earlier formulation, a network must transmit public Internet traffic equivalently without regard for its source, its destination, or its content. Public Internet traffic means traffic that involves externally accessible IP addresses. A network can discriminate on the basis of type–for example, treat streaming video differently from email. But a neutral network cannot discriminate on source, destination, or content within a given type of traffic. A network can  treat special traffic such as cable TV programming or cable-based telephony–“managed services”, in the jargon–differently than regular public Internet traffic, although this is controversial since the border is murky. More controversial still, given current trends, is the exclusion of cellular wireless Internet traffic (but not WiFi) from neutrality requirements.

Pipes

The word “transmit” is important, because it’s different from “send” and “receive”. Users connect computers, servers, phones, television sets, and other devices to networks. They choose and pay for the capacity of their connection (the “pipe”, in the usual but imperfect plumbing analogy) to send and receive network traffic. Not all pipes are the same, and it’s perfectly acceptable for a network to provide lower-quality pipes–slower, for example–to end users who pay less, and to charge customers differently depending on where they are located. But a neutral network must provide the same quality of service to those who pay for the same size, quality, and location of “pipe”.

A user who is mostly going to send and receive small amounts of text (such as email) can get by with very modest and inexpensive capacity. One who is going to view video needs more capacity, one who is going to use two-way videoconferencing needs even more, and a commercial entity that is going to transmit multiple video streams to many customers needs lots. Sometimes the capacity of connections is fixed–one pays for a given capacity regardless of whether one uses it all–and sometimes their capacity and cost adjust dynamically with use. But in all cases one is merely paying for a connection to the network, not for how quickly traffic will get to or arrive from elsewhere. That last depends on how much someone is paying at the other end, and on how well the intervening networks interconnect. Whether one can pay for service quality other than the quality of one’s own connection is central to the current debate.

Users

It’s also important to consider two different (although sometimes overlapping) kinds of users: “end users” and “providers”. In general, providers deliver services to end users, sometimes content (for example, Netflix, the New York Times, or Google Search), sometimes storage (OneDrive, Dropbox), sometimes communications (Gmail, Xfinity Connect), and sometimes combinations of these and other functionality (Office Online, Google Apps).

The key distinctions between providers and end users are scale and revenue flow. The typical provider serves thousands if not millions of end users; the typical end user uses more than a few but rarely more than a few hundred providers. End users provide revenue to providers, either directly or by being counted; providers receive revenue (or sometimes other value such as fame) from end users or advertisers, and use it to fund the services they provide.

Roles

Networks (and therefore network operators) can play different roles in transmission: “first mile”, “last mile”, “backbone”, and “peering”. Providers connect to first-mile networks. End users do the same to last-mile networks. (First-mile and last-mile networks are mirror images of each other, of course, and can swap roles, but there’s always one of each for any traffic.) Sometimes first-mile networks connect directly to last-mile networks, and sometimes they interconnect indirectly using backbones, which in turn can interconnect with other backbones. Peering is how first-mile, last-mile, and backbone networks interconnect.

To use another imperfect analogy, first mile networks are on-ramps to backbone freeways, last-mile networks are off-ramps, and peering is where freeways interconnect. But here’s why the analogy is  imperfect: sometimes providers connect directly to backbones, and sometimes first-mile and last-mile networks have their own direct peering interconnections, bypassing backbones. Sometimes, as the Wired article points out, providers pay last-mile networks to host their servers, and sometimes special content-distribution systems such as Akamai do roughly the same. Those imperfections account for much of the current controversy.

Consider how I connect the Mac on my desk in Comcast‘s downtown office (where a few of us from NBCUniversal also work) to hostmonster.com, where this blog lives. I connect to the office wireless, which gives me a private (10.x.x.x) IP address. That goes to an internal (also private) router in Philadelphia, which then connects to Comcast’s public network. Comcast, as the company’s first-mile network, takes the traffic to Pennsylvania, then to Illinois, then back east to Virginia. There Comcast has a peering connection to Cogent, which is Hostmonster’s first-mile network provider. Cogent carries my traffic from Virginia to Illinois, Missouri, Colorado, and Utah, where Hostmonster is located and connects to Cogent.

If Comcast and Cogent did not have a direct connection, then my traffic would flow through a backbone such as Level3. If Hostmonster placed its servers in Comcast data centers, my traffic would be all-Comcast. As I’ll note repeatedly, this issue–how first-mile, last-mile, and backbones peer, and how content providers deal with this–is driving much of today’s network-neutrality debate. So is the increasing consolidation of the last-mile network business.

Public/Private

“Public” networks are treated differently than “private” ones. Generally speaking, if a network is open to the general public, and charges them fees to use it, then it’s a public network. If access is mostly restricted to a defined, closed community and does not charge use fees, then it’s a private network. The distinction between public and private networks comes mostly from the Communications Assistance to Law Enforcement Act (CALEA), which took effect in 1995. CALEA required “telecommunications carriers” to assist police and other law enforcement, notably by enabling court-approved wiretaps.

Even for traditional telephones, it was not entirely clear which “telecommunications carriers” were covered–for example, what about campus-run internal telephone exchanges?–and as CALEA extended to the Internet the distinction became murkier. Eventually “open to the general public, and charges them fees” provided a practical distinction, useful beyond CALEA.

Most campus networks are private by this definition. So are my home network, the network here in the DC Comcast office, and the one in my local Starbucks. To take the roadway analogy a step further, home driveways, the extensive network of roads within gated residential communities (even a large one such as Kiawah Island), and roadways within large industrial facilities (such as US Steel’s Gary plant) are private. City streets, state highways, and Interstates are public. (Note that the meaning of “public network” in Windows, MacOS, or other security settings is different.)

Neutrality

In practice, and in most of the public debate until recently, the term “network neutrality” has meant this: except in certain narrow cases (such as illegal uses), a neutral-network operator does not prioritize traffic over the last mile to or from an end user according to the source of the traffic, who the end user is, or the content of the traffic. Note the important qualification: “over the last mile”.

An end user with a smaller, cheaper connection will receive traffic more slowly than one who pays for a faster connection, and the same is true for providers sending traffic. The difference may be more pronounced for some types of traffic (such as video) than for others (email). Other than this, however, a neutral network treats all traffic the same. In particular, the network operator does not manipulate the traffic for its own purposes (such as degrading a competitor’s service), and does not treat end users or providers differently except to the extent they pay for the speed or other qualities of their own network connections.

“Public” networks often claim to be neutral, at least to some degree; “private” ones rarely do. Most legislative and regulatory efforts to promote network neutrality focus on public networks.

Enough definition. What does this all mean for higher education, and in particular how is that meaning different from what I wrote about back in 2011?

The Rebirth of Paid Prioritization

Where once the debate centered on last-mile neutrality for Internet traffic to and from end users, which is relatively straightforward and largely accepted, it has now expanded to include both Internet and “managed services” over the full path from provider to end user, which is much more complicated and ambiguous.

An early indicator was AT&T’s proposal to let providers subsidize the delivery of their traffic to AT&T cellular-network end users, specifically by allowing providers to pay the data costs associated with their services to end users. That is, providers would pay for how traffic was delivered and charged to end users. This differs fundamentally from the principle that the service end users receive depends only on what end users themselves pay for. Since cellular networks are not required to be neutral, AT&T’s proposal violated no law or regulation, but it nevertheless triggered opposition: It implied that AT&T’s customers would receive traffic (ads, downloads, or whatever) from some providers more advantageously–that is, more cheaply–than equivalent traffic from other providers. End user would have no say in this, other than to change carriers. Thus far AT&T’s proposal has attracted few providers, but this may be changing.

Then came the running battles between Netflix, a major provider, and last-mile providers such as Comcast and Verizon. Netfllix argued that end users were receiving its traffic less expeditiously than other providers’ traffic, that this violated neutrality principles, and that last-mile providers were responsible for remedying this. The last-mile providers rejected this argument: in their view the problem arose because Netfllix’s first-mile network (as it happens, Cogent, the same one Hostmonster uses) was unwilling to pay for peering connections capable of handling Netflix’s traffic (which can amount to more than a quarter of all Internet traffic some evenings). In the last-mile networks’ view, Netflix’s first-mile provider was responsible for fixing the problem at its (and therefore presumably Netflix’s) expense. The issue is, who pays to ensure sufficient peering capacity? Returning to the highway metaphor, who pays for sufficient interchange ramps between toll roads, especially when most truck traffic is in one direction?

In the event Netflix gave in, and arranged (and paid for) direct first-mile connections to Comcast, Verizon, and other last-mile providers. But Netflix continues to press its case, and its position has relevance for higher education.

Colleges and Universities

Colleges and universities have traditionally taken two positions on network neutrality. Representing end users, including their campus community and distant students served over the Internet, higher education has taken a strong position in support of the FCC’s network-neutrality proposals, and even urged that they be extended to cover cellular networks. As operators of networks funded and designed to support campuses’ instructional, research, and administrative functions, however, higher education also has taken the position that campus networks, like home, company, and other private networks, should continue to be exempted from network-neutrality provisions.

These remain valid positions for higher education to take in the current debate, and indeed the principles recently posted by EDUCAUSE and various other organizations do precisely that. But the emergence of concrete paid-prioritization services may require more nuanced positions and advocacy.  This is partly because the FCC’s positions have shifted, and partly because the technology and the debate have evolved.

Why should colleges and universities care about this new network-neutrality battleground? Because in addition to representing end users and operating private networks, campuses are increasingly providing instruction to distant students over the Internet. Massively open online courses (MOOCs) and other distance-education services often involve streamed or two-way video. They therefore require high-quality end-to-end network connections.

In most cases, campus network traffic to distant student flows over the commercial Internet, rather than over Internet2 or regional research and education (R&E) networks. Whether it reaches students expeditiously depends not only on the campus’s first-mile connection (“first mile” rather than “last mile” because the campus is now a provider rather than simply representing end users), but also on how the campus’s Internet service provider connects to backbones and/or to students’ last-mile networks–and of course on whether distant students have paid for good enough connections. This is similar to Netflix’s situation.

Unlike Netflix, however, individual campuses probably cannot afford to pay for direct connections to all of their students’ last-mile networks, or to place servers in distant data centers. They thus depend on their first-mile networks’ willingness to peer effectively with backbone and last-mile networks. Yet campuses are rarely major customers of their ISPs, and therefore have little leverage to influence ISPs’ backbone and peering choices. Alternatively, campuses can in theory use their existing connections to R&E networks to deliver instruction. But this is only possible if those R&E networks peer directly and capably with key backbone and last-mile providers. R&E networks generally have not done this.

Here’s what this all means: Higher education needs to continue supporting its historical positions promoting last-mile neutrality and seeking private-network exemptions for campus networks. But colleges and universities also need to work together to make sure their instructional traffic will continue to reach distant students. One way to achieve this is by opposing paid prioritization, of course. But FCC and other regulations may permit limited paid prioritization, or technology may as usual stay one step ahead of regulation. Higher education must figure out the best ways to deal with that, and collaborate to make them so.

 

 

 

 

Network Neutrality: Who’s Involved? What’s the Issue? Why Do We Give a Shortstop?

Who’s on First, Abbott and Costello’s classic routine, first reached the general public as part of the Kate Smith Radio Hour in 1938. It then appeared on almost every radio network at some time or another before reaching TV in the 1950s. (The routine’s authorship, as I’ve noted elsewhere, is more controversial than its broadcast history.) The routine can easily be found many places on the Internet – as a script, as audio recordings, or as videos. Some of its widespread availability is from widely-used commercial services (such as YouTube), some is from organized groups of fans, and some is from individuals. The sources are distributed widely across the Internet (in the IP-address sense).

I can easily find and read, listen to, or watch Who’s on First pretty much regardless of my own network location. It’s there through the Internet2 connection in my office, through my AT&T mobile phone, through my Sprint mobile hotspot, through the Comcast connections where I live, and through my local coffeeshops’ wireless in DC and Chicago.

This, most of us believe, is how the Internet should work. Users and content providers pay for Internet connections, at rates ranging from by buying coffee to thousands of dollars, and how fast one’s connection is thus may vary by price and location. One may need to pay providers for access, but the network itself transmits similarly no matter where stuff comes from, where it’s going, or what its substantive content is. This, in a nutshell, is what “network neutrality” means.

Yet network neutrality remains controversial. That’s mostly for good, traditional political reasons. Attaining network neutrality involves difficult tradeoffs among the economics of network provision, the choices available to consumers, and the public interest.

Tradeoffs become important when they affect different actors differently. That’s certainly the case for network neutrality:

  • Network operators (large multifunction ones like AT&T and Comcast, large focused ones like Verizon and Sprint, small local ones like MetroPCS, and business-oriented ones like Level3) want the flexibility to invest and charge differently depending on who wants to transmit what to whom, since they believe this is the only way to properly invest for the future.
  • Some Internet content providers (which in some cases, like Comcast, are are also networks) want to know that what they pay for connectivity will depend only on the volume and technical features of their material, and not vary with its content, whereas others want the ability to buy better or higher-priority transmission for their content than competitors get — or perhaps to have those competitors blocked.
  • Internet users want access to the same material on the same terms regardless of who they are or where they are on the network.

Political perspectives on network neutrality thus vary depending on who is proposing what conditions for whose network.

But network neutrality is also controversial because it’s misunderstood. Many of those involved in the debate either don’t – or won’t – understand what it means for a public network to be neutral, or indeed what the difference is between a public and a private network. That’s as true in higher education as it is anywhere else. Before taking a position on network neutrality or whose job it is to deal with it, therefore, it’s important to define what we’re talking about. Let me try to do that.

All networks discriminate. Different kinds of network traffic can entail different technical requirements, and a network may treat different technical requirements differently. E-mail, for example, can easily be transmitted in bursts – it really doesn’t matter if there’s a fifty-millisecond delay between words – whereas video typically becomes jittery and unsatisfactory if the network stream isn’t steady. A network that can handle email may not be able to handle video. One-way transmission (for example, a video broadcast or downloading a photo) can require very different handling than a two-way transmission (such as a videoconference). Perhaps even more basic, networks properly discriminate between traffic that respects network protocols – the established rules of the road, if you will – and traffic that attempts to bypass rule-based network management.

Network neutrality does not preclude discrimination. Rather, as I wrote above, a network behaves neutrally if it avoids discriminating on the basis of (a) where transmission originates, (b) where transmission is destined, and (c) the content of the transmission. The first two elements of network neutrality are relatively straightforward, but the third is much more challenging. (Some people also confuse how fast their end-user connection is with how quickly material moves across the network – that is, someone paying for a 1-megabit connection considers the Internet non-neutral if they don’t get the same download speeds as someone paying for a 26-megabit connection – but that’s a separate issue largely unrelated to neutrality.) In particular, it can be difficult to distinguish between neutral discrimination based on technical requirements and non-neutral discrimination based on a transmission’s substance.In some cases the two are inextricably linked.

Consider several ways network operators might discriminate with regard to Who’s on First.

  • Alpha Networks might decide that its network simply can’t handle video streaming, and therefore might configure its systems not to transmit video streams. If a user tries to watch a YouTube version of the routine, it won’t work if the transmission involves Alpha Networks. The user will still be able to read the script or listen to an audio recording of the routine (for example, any of those listed in the Media|Audio Clips section of http://www.abbottandcostello.net/). Although refusing to carry video is clearly discrimination, it’s not discrimination based on source, destination, or content. Alpha Networks therefore does not violate network neutrality.
  • Beta Networks might be willing to transmit video streams, but only from providers that pay it to do so. Say, purely hypothetically, that the Hulu service – jointly owned by NBC and Fox – were to pay Beta Networks to carry its video streams, which include an ad-supported version of Who’s on First. Say further that Google, whose YouTube streams include many Who’s on First examples, were to decline to pay. If Beta Networks transmitted Hulu’s versions but not Google’s, it would be discriminating on the basis of source – and probably acting non-neutrally.

What if Hulu and Google use slightly different video formats? Beta might claim that carrying Hulu’s traffic but not Google’s was merely technical discrimination, and therefore neutral. Google would probably disagree. Who resolves such controversies – market behavior, the courts, industry associations, the FCC – is one of the thorniest points in the national debate about network neutrality. Onward…

  • Gamma Networks might decide that Who’s on First ridicules and thus disparages St. Louis (many performances of the routine refer to “the St Louis team”, although others refer to the Yankees). To avoid offending customers, Gamma might refuse to transmit Who’s on First, in any form, to any user in Missouri. That would be discrimination on the basis of destination. Gamma would violate the neutrality principle.
  • Delta Networks, following Gamma’s lead, might decide that Who’s on First disparages not just St. Louis, but professional baseball in general. Since baseball is the national pastime, and perhaps worried about lawsuits, Delta Networks might decide that Who’s on First should not be transmitted at all, and therefore it might refuse to carry the routine in any form. That would be discrimination on the basis of content. Delta would be violating the neutrality principle.
  • Epsilon Networks, a competitor to Alpha, might realize that refusing to carry video disserves customers. But Epsilon faces the same financial challenges as Alpha. In particular, it can’t raise its general prices to cover the expense of transmitting video since it would then lose most of its customers (the ones who don’t care about video) to Alpha’s lesser but less expensive service. Rather than block video, Epsilon might decide to install equipment that will enable video as a specially provided service for customers who want it, and to charge those customers – but not its non-video customers – extra for the added capability. Whether an operator violates network neutrality by charging more for special network treatment of certain content – the usual term for this is “managed services” – is another one of the thorniest issues in the national debate.

As I hope these examples make clear, there are various kinds of network discrimination, and whether they violate network neutrality is sometimes straightforward and sometimes not.  Things become thornier still if networks are owned by content providers or vice versa – or, as is more typical, if there are corporate kinships between the two. Hulu, for example, is partly owned by NBC Universal, which is becoming part of Comcast. Can Comcast impose conditions on “outside” customers, such as Google’s YouTube, that it does not impose on its own corporate cousin?

Why do we give a shortstop (whose name, lest you didn’t read to the end of the Who’s on First script, is “darn”)? That is, why is network neutrality important to higher education? There are two principal reasons.

First, as mobility and blended learning (the combination of online and classroom education) become commonplace in higher education, it becomes very important that students be able to “attend” their college or university from venues beyond the traditional campus. To this end, it is very important that colleges and universities be able to provide education to their students and interconnect researchers over the Internet. This should be constrained only by the capacity of the institution’s connection to the Internet, the technical characteristics of online educational materials and environments, and the capacity of students’ connections to the Internet.

Without network neutrality, achieving transparent educational transmission from campus to widely-distributed students could become very difficult. The quality of student experience could come to depend on the politics of the network path from campus to student.To address this, each college and university would need to negotiate transmission of its materials with every network operator along the path from campus to student. If some of those network operators negotiate exclusive agreements for certain services with commercial providers – or perhaps with other colleges or universities – it could become impossible to provide online education effectively.

Second, many colleges and universities operate extensive networks of their own, or together operate specialized inter-campus networks for education, research, administrative, and campus purposes. Network traffic inconsistent with or detrimental to these purposes is managed differently than traffic that serves them. It is important that colleges and universities retain the ability to manage their networks in support of their core purposes.

Networks that are operated by and for the use of particular organizations, like most college and university networks, are private networks. Private and public networks serve different purposes, and thus are managed based on different principles. The distinction is important because the national network-neutrality debate – including the recent FCC action, and its evolving judicial, legislative, and regulatory consequences – is about public networks.

Private networks serve private purposes, and therefore need not behave neutrally. They are managed to advance private goals. Public networks, on the other hand, serve the public interest, and so – network-neutrality advocates argue – should be managed in accordance with public policy and goals. Although this seems a clear distinction, it can become murky in practice.

For example, many colleges and universities provide some form of guest access to their campus wireless networks, which anyone physically on campus may use. Are guest networks like this public or private? What if they are simply restricted versions of the campus’s regular network? Fortunately for higher education, there is useful precedent on this point. The Communications Assistance for Law Enforcement Act (CALEA), which took effect in 1995, established principles under which most college and university campus networks are treated as private networks – even if they provide a limited set of services to campus visitors (the so-called “coffee shop” criterion).

Higher education needs neutrality on public networks because those networks are increasingly central to education and research. At the same time, higher education needs to manage campus networks and private networks that interconnect them in support of education and research, and for that reason it is important that there be appropriate policy differentiation between public and private networks.

Regardless, colleges and universities need to pay for their Internet connectivity, to negotiate in good faith with their Internet providers, and to collaborate effectively on the provision and management of campus and inter-campus networks. So long as colleges and universities act effectively and responsibly as network customers, they need assurance that their traffic will flow across the Internet without regard to its source, destination, or content.

And so we come to the central question: Assuming that higher education supports network neutrality for public networks, do we care how its principles – that public networks should be neutral, and that private ones should be manageable for private purposes – are promulgated, interpreted, and enforced? Since the principles are important to us, as I outlined above, we care that they be implemented effectively, robustly, and efficiently. Since the public/private distinction seems to be relatively uncontroversial and well understood, the core issue is whether and how to address network neutrality for public networks.

There appear to be four different ideas about how to implement network neutrality.

  1. A government agency with the appropriate scope, expertise, and authority could spell out the circumstances that would constitute network neutrality, and prescribe mechanisms for correcting circumstances that fell short of those. Within the US, this would need to be a federal agency, and the only one arguably up to the task is the Federal Communications Commission. The FCC has acted in this way, but there remain questions whether it has the appropriate authority to proceed as it has proposed.
  2. The Congress could enact laws detailing how public networks must operate to ensure network neutrality. In general, it has proven more effective for the Congress to specify a broad approach to a public-policy problem, and then to create and/or empower the appropriate government agency to figure how what guidelines, regulations, and redress mechanisms are best. Putting detail into legislation tends to enable all kinds of special negotiations and provisions, and the result is then quite hard to change.
  3. The networking industry could create an internal body to promote and enforce network neutrality, with appropriate powers to take action when its members fail to live up to neutrality principles. Voluntary self-regulatory entities like this have been successful in some contexts and not in others. Thus far, however, the networking industry is internally divided as to the wisdom of network neutrality, and without agreement on the principle it is hard to see how there could be agreement on self-regulation.
  4. Network neutrality could simply be left to the market. That is, if network neutrality is important to customers, they will buy services from neutral providers and avoid services from non-neutral providers. The problem here is that network neutrality must extend across diverse networks, and individual consumers – even if they are large organizations such as many colleges and universities – interact only with their own “last mile” provider.

Those of us in higher education who have been involved in the network-neutrality debates have come to believe that among these four approaches the first is most likely to yield success and most likely to evolve appropriately as networking and its applications evolve. This is especially true for wireless (that is, cellular) networking, where there remain legitimate questions about what level of service should be subject to neutrality principles, and what kinds of service might legitimately be considered managed, extra-cost services.

In theory, the national debate about network neutrality will unfold through four parallel processes. Two of these are already underway: the FCC has issued an order “to Preserve Internet Freedom and Openness”, and at least two network operators have filed lawsuits challenging the FCC’s authority to do that. So we already have agency and court involvement, and we can possiible congressional actions and industry initiatives to round out the set.

One thing’s sure: This is going to become more complicated and confusing…

Lou: I get behind the plate to do some fancy catching, Tomorrow’s pitching on my team and a heavy hitter gets up. Now the heavy hitter bunts the ball. When he bunts the ball, me, being a good catcher, I’m gonna throw the guy out at first base. So I pick up the ball and throw it to who?

Bud: Now that’s the first thing you’ve said right.

Lou: I don’t even know what I’m talking about!

Parsing Mobility

Old news from the buzzword-bingo front: “Cloud” is giving way to “Mobility” as the word to work into every presentation.

To many people, “mobile computing” means a small device interacting with a massively interconnected set of cloud-based databases and computational engines. From that perspective, mobile computing isn’t an emerging technology in its own right, but rather a window into a maturing one, and so not very interesting technologically.

Delve deeper, and “mobile computing” becomes very interesting — not as a technology, but rather as an aggregation of several technologies whose evolutionary paths overlap in a particularly fertile way. Understanding the emergence of mobile technology thus requires parsing it into its components — and the same goes for guessing about the future.

In no particular order, what follow are the technologies I think underlie the current transformation of our lives through mobile computing, and how they’re likely to evolve. Please add to and/or comment on the list!

  • Pervasive, transparent wireless. What we need, and what’s likely to emerge, is a combination of technology and business practices that enable people simply to stop thinking about how their devices are connected. Right now connectivity might be by 802.11 WiFi, and the WiFi might use any of several authentication and security technologies, or it might be cellular, where how you connect depends on which carrier your device likes, or it might be one of the emerging non-cellular, non-WiFi technologies like WiMax. The key technology that has yet to emerge is a mechanism for reconciling and federating the diverse identities people already use to get wireless access.
  • Federated identity and attribution. I have somewhere north of 20 email addresses, plus almost as many phone numbers, some bank accounts, a wallet full of credit cards, and several membership IDs. Eventually there needs to be some way to communicate the relevant dimensions of these identity icons from mobile devices into the cloud or vice versa — and to do so without communicating the irrelevant dimensions or exposing us to identity thieves. Moreover, the sources that identify me may be different from the sources that identify others, and these different sources need some kind of interlinking trust chain. Without these kinds of federated, limited, focused mechanisms for sharing attributes, it will remain awkward to integrate mobile devices into the commercial fabric.
  • Haptic interfaces. The touch screen is rapidly complementing and in many cases supplanting the keyboard and pointing device on small devices, and it is beginning to do so on larger ones (eg, iPad, Kindle, etc). Touch isn’t the only haptic technology that’s emerging rapidly, though — there are also three-dimensional technologies like the field sensors used in Wii controllers. We’re going to see rapid progress here.
  • Solid-state storage. It’s interesting to remember that the original iPod actually had a spinning hard drive in it — that would be unthinkable in a small device today, where flash memory reigns supreme, and it’s becoming unthinkable in light laptops (eg, the small Dells like mine, and the new MacBook Air), and we’ll see that progression continue.
  • Low-power processors. Without these and the next item, devices really aren’t “mobile”; rather, they’re temporarily detachable. Getting processors to consume less energy and put off less heat is critical to both run time and miniaturization. We’ll see immense progress here, I think, and that will gradually erase the difference between the flexibility of “portable computers” and the long run-times of “mobile devices”.
  • Power. Mobile computing would be infeasible without compact lithium-ion batteries, but they’re only one step along a continuum that eventually yields some combination of wireless energy supplies (presumably solar, but some based on body heat and kinetics might re-emerge — if you’re as old as me, you’ll remember so-called “self-winding” watches, whose springs were wound by a delicately balanced internal swing arm that spun around as we walked). New battery types or capabilities are also possibilities.
  • Displays. We’re still pretty much confined to displays that require some kind of rigid (or rigidly supported) surface, be it a liquid-crystal mechanism of some kind (many laptop displays, plus Kindles and other “electronic ink” devices) or some kind of charged-glass mechanism (such as iPhones and iPads, also some laptops and plasma screens). Cheap little projectors are another technology that’s playing in this space, but they only work in the dark, and then not very well. Eventually someone is going to figure out how to produce displays that are flexible, even rollable or foldable, while still being capable of detailed rendering and some kind of haptic input.
  • Encryption. As outsiders seek access to individual data and communications and individuals become worried about that, we’ll see demand for simple yet secure encryption mechanisms. The problem is how to balance simplicity of use, security level, and recoverability. It’s easy to develop encryption that’s easy to use, but often that makes it less secure and/or makes it hard to recover data if one forgets one’s password. Solving either of the latter problems typically reduces simplicity, and so on around the circle.
  • Sensors. Many mobile devices already have some kind of location sensor (GPS or cell-tower triangulation), often accompanied by a compass and an accelerometer. Pressure sensors, thermometers, magnetic-field detectors, bar-code readers, weather-radio receivers, speech parsers, fingerprint readers, and other sensors are also becoming common — and some of them, like Shazam, are quite astonishing. Gradually our mobile devices will need less and less information from us.

The point is, the emergence of mobile technology isn’t unidimensional — it’s not Dick Tracy’s wrist radio becoming a wrist TV. Rather, it comprises the simultaneous emergence and confluence of several otherwise distinct technologies.

It’s inevitable that both the emergence and the confluence will continue in ways we can scarcely imagine. This yet another example of the maxim we always need to remember: everything, even technological progress, is connected to everything else!