Posts Tagged ‘Campus’

Notes From (or is it To?) the Dark Side

“Why are you at NBC?,” people ask. “What are you doing over there?,” too, and “Is it different on the dark side?” A year into the gig seems a good time to think about those. Especially that “dark side” metaphor.  For example, which side is “dark”?

This is a longer-than-usual post. I’ll take up the questions in order: first Why, then What, then Different; use the links to skip ahead if you prefer.

Why are you at NBC?

5675955This is the first time I’ve worked at a for-profit company since, let’s see, the summer of 1967: an MIT alumnus arranged an undergraduate summer job at Honeywell‘s Mexico City facility. Part of that summer I learned a great deal about the configuration and construction of custom control panels, especially for big production lines. I think of this every time I see photos of big control panels, such as those at older nuclear plants—I recognize the switch types, those square toggle buttons that light up. (Another part of the summer, after the guy who hired me left and no one could figure out what I should do, I made a 43½-foot paper-clip chain.)

One nice Honeywell perk was an employee discount on a Pentax 35mm SLR with a 40mm and 135mm lenses, which I still have in a box somewhere, and which still works when I replace the camera’s light-meter battery. (The Pentax brand belonged to Honeywell back then, not Ricoh.) Excellent camera, served me well for years, through two darkrooms and a lot of Tri-X film. I haven’t used it since I began taking digital photos, though.

5499942818_d3d9e9929b_nI digress. Except, it strikes me, not really. One interesting thing about digital photos, especially if you store them online and make most of them publicly visible (like this one, taken on the rim of spectacular Bryce Canyon, from my Backdrops collection), is that sometimes the people who find your pictures download them and use them for their own purposes. My photos carry a Creative Commons license specifying that although they are my intellectual property, they can be used for nonprofit purposes so long as they are attributed to me (an option not available, apparently, if I post them on Facebook instead).

So long as those who use my photos comply with the CC license requirement, I don’t require that they tell me, although now and then they do. But if people want to use one of my photos commercially, they’re supposed to ask my permission, and I can ask for a use fee. No one has done that for me—I’m keeping the day job—but it’s happened for our son.

dmcaI hadn’t thought much about copyright, permissions, and licensing for personal photos (as opposed to archival, commercial, or institutional ones) back when I first began dealing with “takedown notices” sent to the University of Chicago under the Digital Millennium Copyright Act (DMCA). There didn’t seem to be much of a parallel between commercialized intellectual property, like the music tracks that accounted for most early DMCA notices, and my photos, which I was putting online mostly because it was fun to share them.

Neither did I think about either photos or music while serving on a faculty committee rewriting the University’s Statute 18, the provision governing patents in the University’s founding documents.

sealThe issues for the committee were fundamentally two, both driven somewhat by the evolution of “textbooks”.

First, where is the line between faculty inventions, which belong to the University (or did at the time), and creations, which belong to creators—between patentable inventions and copyrightable creations, in other words? This was an issue because textbooks had always been treated as creations, but many textbooks had come to include software (back then, CDs tucked into the back cover), and software had always been treated as an invention.

Second, who owns intellectual property that grows out of the instructional process? Traditionally, the rights and revenues associated with textbooks, even textbooks based on University classes, belonged entirely to faculty members. But some faculty members were extrapolating this tradition to cover other class-based material, such as videos of lectures. They were personally selling those materials and the associated rights to outside entities, some of which were in effect competitors (in some cases, they were other universities!).

fathomAs you can see by reading the current Statute 18, the faculty committee really didn’t resolve any of this. Gradually, though, it came to be understood  that textbooks, even textbooks including software, were still faculty intellectual property, whereas instructional material other than that explicitly included in traditional textbooks was the University’s to exploit, sell, or license.

With the latter well established, the University joined Fathom, one of the early efforts to commercialize online instructional material, and put together some excellent online materials. Unfortunately, Fathom, like its first-generation peers, failed to generate revenues exceeding its costs. Once it blew through its venture capital, which had mostly come from Columbia University, Fathom folded. (Poetic justice: so did one of the profit-making institutions whose use of University teaching materials prompted the Statute 18 review.)

Gradually this all got me interested in the thicket of issues surrounding campus online distribution and use of copyrighted materials and other intellectual property, and especially the messy question how campuses should think about copyright infringement occurring within and distributed from their networks. The DMCA had established the dual principles that (a) network operators, including campuses, could be held liable for infringement by their network users, but (b) they could escape this liability (find “safe harbor”) by responding appropriately to complaints from copyright holders. Several of us research-university CIOs worked together to develop efficient mechanisms for handling and responding to DMCA notices, and to help the industry understand those and the limits on what they might expect campuses to do.

heoaAs one byproduct of that, I found myself testifying before a Congressional committee. As another, I found myself negotiating with the entertainment industry, under US Education Department auspices, to develop regulations implementing the so-called “peer to peer” provisions of the Higher Education Opportunity Act of 2008.

That was one of several threads that led to my joining EDUCAUSE in 2009. One of several initiatives in the Policy group was to build better, more open communications between higher education and the entertainment industry with regard to copyright infringement, DMCA, and the HEOA requirements.

hero-logo-edxI didn’t think at the time about how this might interact with EDUCAUSE’s then-parallel efforts to illuminate policy issues around online and nontraditional education, but there are important relevancies. Through massively open online courses (MOOCs) and other mechanisms, colleges and universities are using the Internet to reach distant students, first to build awareness (in which case it’s okay for what they provide to be freely available) but eventually to find new revenues, that is, to monetize their intellectual property (in which case it isn’t).

music-industryIf online campus content is to be sold rather than given away, then campuses face the same issues as the entertainment industry: They must protect their content from those who would use it without permission, and take appropriate action to deter or address infringement.

Campuses are generally happy to make their research freely available (except perhaps for inventions), as UChicago’s Statute 18 makes clear, provided that researchers are properly credited. (I also served on UChicago’s faculty Intellectual Property Committee, which among other things adjudicated who-gets-credit conflicts among faculty and other researchers.) But instruction is another matter altogether. If campuses don’t take this seriously, I’m afraid, then as goes music, so goes online higher education.

Much as campus tumult and changes in the late Sixties led me to abandon engineering for policy analysis, and quantitative policy analysis led me into large-scale data analysis, and large-scale data analysis led me into IT, and IT led me back into policy analysis, intellectual-property issues led me to NBCUniversal.

Peacock_CleanupI’d liked the people I met during the HEOA negotiations, and the company seemed seriously committed to rethinking its relationships with higher education. I thought it would be interesting, at this stage in my career, to do something very different in a different kind of place. Plus, less travel (see screwup #3 in my 2007 EDUCAUSE award address).

So here I am, with an office amidst lobbyists and others who focus on legislation and regulation, with a Peacock ID card that gets me into the Universal lot, WRC-TV, and 30 Rock (but not SNL), and with a 401k instead of a 403b.

What are you doing over there?

NBCUniversal’s goals for higher education are relatively simple. First, it would like students to use legitimate sources to get online content more, and illegitimate “pirate” sources less. Second, it would like campuses to reduce the volume of infringing material made available from their networks to illegal downloaders worldwide.

477px-CopyrightpiratesMy roles are also two. First, there’s eagerness among my colleagues (and their counterparts in other studios) to better understand higher education, and how campuses might think about issues and initiatives. Second, the company clearly wants to change its approach to higher education, but doesn’t know what approaches might make sense. Apparently I can help with both.

To lay foundation for specific projects—five so far, which I’ll describe briefly below—I looked at data from DMCA takedown notices.

Curiously, it turned out, no one had done much to analyze detected infringement from campus networks (as measured by DMCA notices sent to them), or to delve into the ethical puzzle: Why do students behave one way with regard to misappropriating music, movies, and TV shows, and very different ways with regard to arguably similar options such as shoplifting or plagiarism? I’ve written about some of the underlying policy issues in Story of S, but here I decided to focus first on detected infringement.

riaa-logoIt turns out that virtually all takedown notices for music are sent by the Recording Industry Association of America, RIAA (the Zappa Trust and various other entities send some, but they’re a drop in the bucket).

MPAAMost takedown notices for movies and some for TV are sent by the Motion Picture Association of America, MPAA, on behalf of major studios (again, with some smaller entities such as Lucasfilm wading in separately). NBCUniversal and Fox send out notices involving their movies and TV shows.

sources chartI’ve now analyzed data from the major senders for both a twelve-month period (Nov 2011-Oct 2012) and a more recent two-month period (Feb-Mar 2013). For the more recent period, I obtained very detailed data on each of 40,000 or so notices sent to campuses. Here are some observations from the data:

  • Almost all the notices went to 4-year campuses that have at least 100 dormitory beds (according to IPEDS). To a modest extent, the bigger the campus the more notices, but the correlation isn’t especially large.
  • Over half of all campuses—even of campuses with dorms—didn’t get any notices. To some extent this is because there are lots and lots of very small campuses, and they fly under the infringement-detection radar. But I’ve learned from talking to a fair number of campuses that, much to my surprise, many heavily filter or even block peer-to-peer traffic at their commodity Internet border firewall—usually because the commodity bandwidth p2p uses is expensive, especially for movies, rather than to deal with infringement per se. Outsourced dorm networks also have an effect, but I don’t think they’re sufficiently widespread yet to explain the data.
  • Several campuses have out-of-date or incorrect “DMCA agent” addresses registered at the Library of Congress. Compounding that, it turns out some notice senders use “abuse” or other standard DNS addresses rather than the registered agent addresses.
  • Among campuses that received notices, a few campuses stand out for receiving the lion’s share, even adjusting for their enrollment. For example, the top 100 or so recipient campuses got about three quarters of the total, and a handful of campuses stand out sharply even within that group: the top three campuses (the leftmost blue bars in the graph below) accounted for well over 10% of the notices. (I found the same skewness in the 2012 study.) With a few interesting exceptions (interesting because I know or suspect what changed), the high-notice groups have been the same for the two periods.

utorrent-facebook-mark-850-transparentThe detection process, in general, is that copyright holders choose a list of music, movie, or TV titles they believe likely to be infringed. Their contractors then use BitTorrent tracker sites and other user tools to find illicit sources for those titles.

For the most part the studios and associations simply look for titles that are currently popular in theaters or from legitimate sources. It’s hard to see that process introducing a bias that would affect some campuses so much differently than others. I’ve also spent considerable time looking at how a couple of contractors verify that titles being offered illicitly (that is, listed for download on a BitTorrent tracker site such as The Pirate Bay) are actually the titles being supplied (rather than, say, malware, advertising, or porn), and at how they figure out where to send the resulting takedown notices. That process too seems pretty straightforward and unbiased.

argo-15355-1920x1200Sender choices clearly can influence how notice counts vary from time to time: for example, adding a newly popular title to the search list can lead to a jump in detections and hence notices. But it’s hard to see how the choice of titles would influence how notice counts vary from institution to institution.

This all leads me to believe that takedown notices tell us something incomplete but useful about campus policies and practices, especially at the extremes. The analysis led directly to two projects focused on specific groups of campuses, and indirectly to three others.

Role Model Campuses

Based on the results of the data analysis, I communicated individually with CIOs at 22 campuses that received some but relatively few notices: specifically, campuses that (a) received at least one notice (and so are on the radar) but (b) fewer than 300 and fewer than 20 per thousand student headcount, (c) have at least 7,500 headcount students, and (d) have at least 10,000 dorm beds (per IPEDS) or sufficient dorm beds to house half your headcount. (These are Group 4, the purple bars in the graph below. The solid bars represent total notices sent, and the hollow bars represent incidence, or notices per thousand headcount students. Click on the graph to see it larger.)

I’ve asked each of those campuses whether they’d be willing to document their practices in an open “role models” database developed jointly by the campuses and hosted by a third party such as groups charta higher-education association (as EDUCAUSE did after the HEOA regulations took effect). The idea is to make a collection of diverse effective practices available to other campuses that might want to enhance their practices.

High Volume Campuses

Separately, I communicated privately with CIOs at 13 campuses that received exceptionally many notices, even adjusting for their enrollment (Group 1, the blue bars in the graph). I’ve looked in some detail at the data for those campuses, some large and some small, and in some cases that’s led to suggestions.

For example, in a few cases I discovered that virtually all of a high-volume campus’s notices were split evenly among a small number of consecutive IP addresses. In those cases, I’ve suggested that those IP addresses might be the front-end to something like a campus wireless network. Filtering or blocking p2p (or just BitTorrent) traffic on those few IP addresses (or the associated network devices) might well shrink the campus’s role as a distributor without affecting legitimate p2p or BitTorrent users (who tend to be managing servers with static addresses).


Back when I was at EDUCAUSE, we worked with NBCUniversal to host a DC meeting between senior campus staff from a score of campuses nationwide and some industry staff closely involved with the detection and notification for online infringement. The meeting was energetic and frank, and participants from both sides went away with a better sense of the other’s bona fides and seriousness. This was the first time campus staff had gotten a close look at the takedown-notice process since a Common Solutions Group meeting in Ann Arbor some years earlier; back then the industry’s practices were much less refined.

university-st-thomas-logo-white croppedBased on the NBCUniversal/EDUCAUSE experience, we’re organizing a series of regional “Symposia” along these lines on campuses in various cities across the US. The objectives are to open new lines of communication and to build trust. The invitees are IT and student-affairs staff from local campuses, plus several representatives from industry, especially the groups that actually search for infringement on the Internet. The first was in New York, the second in Minneapolis, the third will be in Philadelphia, and others will follow in the West, the South, and elsewhere in the Midwest.


We’re funding a study within a major state university system to gather two kinds of data. Initially the researchers are asking each campus to describe the measures it takes to “effectively combat” copyright infringement: its communications with students, its policies for dealing with violations, and the technologies it uses. The data from the first phase will help enhance a matrix we’ve drafted outlining the different approaches taken by different campuses, complementing what will emerge from the “role models” project.

Based on the initial data, the researchers and NBCUniversal will choose two campuses to participate in the pilot phase of the Campus Online Education Initiative (which I’ll describe next). In advance of that pilot, the researchers will gather data from a sample of students on each campus, asking about their attitudes toward and use of illicit and legitimate online sources for music, movies, and video. They’ll then repeat that data collection after the pilot term.

Campus Online Entertainment Initiative

Last but least in neither ambition nor complexity, we’re crafting a program that will attempt to address both goals I listed earlier: encouraging campuses to take effective steps to reduce distribution of infringing material from their networks, and helping students to appreciate (and eventually prefer) legitimate sources for online entertainment.

maxresdefaultWorking with Universal Studios and some of its peers, we’ll encourage students on participating campuses to use legitimate sources by making a wealth of material available coherently and attractively—through a single source that works across diverse devices, and at a substantial discount or with similar incentives.

Participating campuses, in turn, will maintain or implement policies and practices likely to shrink the volume of infringing material available from their networks. In some cases the participating campuses will already be like those in the “role models” group; in others they’ll be “high volume” or other campuses willing to  adopt more effective practices.

I’m managing these projects from NBCUniversal’s Washington offices, but with substantial collaboration from company colleagues here, in Los Angeles, and in New York; from Comcast colleagues in Philadelphia; and from people in other companies. Interestingly, and to my surprise, pulling this all together has been much like managing projects at a research university. That’s a good segue to the next question.

Is it different on the dark side?

IMG_1224Newly hired, I go out to WRC, the local NBC affiliate in Washington, to get my NBCUniversal ID and to go through HR orientation. Initially it’s all familiar: the same ID photo technology, the same RFID keycard, the same ugly tile and paint on the hallways, the same tax forms to be completed by hand.

But wait: Employee Relations is next door to the (now defunct) Chris Matthews Show. And the benefits part of orientation is a video hosted by Jimmy Fallon and Brian Williams. And there’s the possibility of something called a “bonus”, whatever that is.

Around my new office, in a spiffy modern building at 300 New Jersey Avenue, everyone seems to have two screens. That’s just as it was in higher-education IT. But wait: here one of them is a TV. People watch TV all day as they work.

Toto, we’re not in higher education any more.

IMG_1274It’s different over here, and not just because there’s a beautiful view of the Capitol from our conference rooms. Certain organizational functions seem to work better, perhaps because they should and in the corporate environment can be implemented by decree: HR processes, a good unified travel arrangement and expense system, catering, office management. Others don’t: there’s something slightly out of date about the office IT, especially the central/individual balance and security, and there’s an awful lot of paper.

Some things are just different, rather than better or not: the culture is heavily oriented to face-to-face and telephone interaction, even though it’s a widely distributed organization where most people are at their desks most of the time. There’s remarkably little email, and surprisingly little use of workstation-based videoconferencing. People dress a bit differently (a maitre d’ told me, “that’s not a Washington tie”).

But differences notwithstanding, mostly things feel much the same as they did at EDUCAUSE, UChicago, and MIT.

tiny NBCUniversal_violet_1030Where I work is generally happy, people talk to one another, gossip a bit, have pizza on Thursdays, complain about the quality of coffee, and are in and out a lot. It’s not an operational group, and so there’s not the bustle that comes with that, but it’s definitely busy (especially with everyone around me working on the Comcast/Time Warner merger). The place is teamly, in that people work with one another based on what’s right substantively, and rarely appeal to authority to reach decisions. Who trusts whom seems at least as important as who outranks whom, or whose boss is more powerful. Conversely, it’s often hard to figure out exactly how to get something done, and lots of effort goes into following interpersonal networks. That’s all very familiar.

MIT_Building_10_and_the_Great_Dome,_Cambridge_MAI’d never realized how much like a research university a modern corporation can be. Where I work is NBCUniversal, which is the overarching corporate umbrella (“Old Main”, “Mass Hall”, “Building 10”, “California Hall”, “Boulder”) for 18 other companies including news, entertainment, Universal Studios, theme parks, the Golf Channel, Telemundo (which are remarkably like schools and departments in their varied autonomy).

Meanwhile NBCUniversal is owned by Comcast—think “System Central Office”. Sure, these are all corporate entities, and they have concrete metrics by which to measure success: revenue, profit, subscribers, viewership, market share. But the relationships among organizations, activities, and outcomes aren’t as coherent and unitary as I’d expected.

Dark or Green?

So, am I on the dark side, or have I left it behind for greener pastures? Curiously, I hear both from my friends and colleagues in higher education: Some of them think my move is interesting and logical, some think it odd and disappointing. Curioser still, I hear both from my new colleagues in the industry: Some think I was lucky to have worked all those decades in higher education, while others think I’m lucky to have escaped. None of those views seems quite right, and none seems quite wrong.

The point, I suppose, is that simple judgments like “dark” and “greener” underrepresent the complexity of organizational and individual value, effectiveness, and life. Broad-brush characterizations, especially characterizations embodying the ecological fallacy, ”…the impulse to apply group or societal level characteristics onto individuals within that group,” do none of us any good.

It’s so easy to fall into the ecological-fallacy trap; so important, if we’re to make collective progress, not to.

Comments or questions? Write me:

(The quote is from Charles Ess & Fay Sudweeks, Culture, technology, communication: towards an intercultural global village, SUNY Press 2001, p 90. Everything in this post, and for that matter all my posts, represents my own views, not those of my current or past employers, or of anyone else.)

3|5|2014 11:44a est

Perceived Truths as Policy Paradoxes

imagesThe quote I was going to use to introduce this topic — “You’re entitled to your own opinion, but not to your own facts” — itself illustrates my theme for today: that truths are often less than well founded, and so can turn policy discussions weird.

I’d always heard the quote attributed to Pat Moynihan, an influential sociologist who co-wrote Beyond the Melting Pot with Nathan Glazer, directed the MIT-Harvard Joint Center for Urban Studies shortly before I worked there (and left behind a closet full of Scotch, which stemmed from his perhaps apocryphal rule that no meeting extend beyond 4pm without a bottle on the table), and later served as a widely respected Senator from New York. The collective viziers of Wikipedia have found other attributions for the quote, however. (This has me once again looking for the source of “There go my people, I must go join them, for I am their leader,” supposedly Mahatma Gandhi but apparently some French general — but I digress.). The quote will need to stand on its own.

a0157b7d-9976-410d-bba8-6ccf1dbf4c48-The-ACT-Here’s the Scott Jaschik item from Inside Higher Education that triggered today’s Rumination:

A new survey from ACT shows the continued gap between those who teach in high school and those who teach in college when it comes to their perceptions of the college preparation of today’s students. Nearly 90 percent of high school teachers told ACT that their students are either “well” or “very well” prepared for college-level work in their subject area after leaving their courses. But only 26 percent of college instructors reported that their incoming students are either “well” or “very well” prepared for first-year credit-bearing courses in their subject area. The percentages are virtually unchanged from a similar survey in 2009.

This is precisely what Moynihan (or whoever) had in mind: two parties to an important discussion each bearing their own data, and therefore unable to agree on the problem or how to address it. The teachers presumably think the professors have unreasonable expectations, or don’t work very hard to bring their students along; the professors presumably think the teachers aren’t doing their job. Each side therefore believes the problem lies on the other, and has data to prove that. Collaboration is unlikely, progress ditto. This is what Moynihan had observed about the federal social policy process.

5-financial-aid-tips-1The ACT survey reminded me of a similar finding that emerged back when I was doing college-choice research. I can’t locate a citation, but I recall hearing about a study that surveyed students who had been admitted to several different colleges.

The clever wrinkle in the study was that the students received several different survey queries, each purporting to be from one of the colleges to which he or she had been admitted, and each asking the student about the reasons for accepting or declining the admission offer. Here’s what they found: students told the institution they’d accepted that the reason was excellent academic quality, but they told the institutions they’d declined that the reason was better financial aid from the one they’d accepted.

131More recently, I was talking to a colleague in a another media company who was concerned about the volume of copyright infringement on a local campus. According to the company, the campus was hosting a great deal of copyright infringementl, as measured by the volume of requests for infringing material being sent out by BitTorrent. But according to the campus, a scan of the campus network identified very few hosts running the peer-to-peer applications. The colleague thought the campus was blowing smoke, the campus thought the company’s statistics were wrong.

Although these three examples seem similar — parties disagreeing about facts — in fact they’re a bit different.

  • In the teacher/professor example, the different conclusions presumably stem from different (and unshared) definitions of “”prepared for college-level work”.
  • In the accepted/decline example, the different explanations possibly stem from students’ not wanting to offend the declined institution by questioning its quality, or wanting think of their actual choice as good rather than cheap.
  • In the infringement/application case, the different explanations stem from divergent metrics.

compass-badgeWe’ve seen similar issues arise around institutional attributes in higher education. Do ratings like those from US News & World Report gather their own data, for example, or rely on presumably neutral sources such as the National Center for Educational Statistics? This is critical where results have major reputational effects — consider George Washington University’s inflation of class-rank admissions data, and similar earlier issues with Claremont McKenna, Emory, Villanova, and others.

I’d been thinking about this because in my current job it’s quite important to understand patterns of copyright infringement on campuses. It would be good to figure out which campuses seem to have relatively low infringement rates, and to explore and document their policies and practices lest other campuses might benefit. For somewhat different reasons, it would be good to figure out which campuses seem to have relatively high infringement rates, so that they could be encouraged adopt different policies and practices.

But here we run into the accept/decline problem. If the point to data collection is to identify and celebrate effective practice, there are lots of incentives for campuses to participate. But if the point is to identify and pressure less effective campuses, the incentives are otherwise.

Compounding the problem, there are different ways to measure the problem:

  • One can rely on externally generated complaints, whose volume can vary for reasons having nothing to do with the volume of infringement,
  • one can rely on internal assessments of network traffic, which can be inadvertently selective, and/or
  • one can rely on external measures such as the volume of queries to known sources of infringement;

I’m sure there are others — and that’s without getting into the religious wars about copyright, middlemen, and so forth I addressed in an earlier post).

There’s no full solution to this problem. But there are two things that help: collaboration and openness.

  • By “collaboration,” I mean that parties to questions of policy or practice should work together to define and ideally collect data; that way, arguments can focus on substance.
  • By “openness,” I mean that wherever possible raw data, perhaps anonymized, should accompany analysis and advocacy based on those data.

As an example what this means, here are some thoughts for one of my upcoming challenges — figuring out how to identify campuses that might be models for others to follow, and also campuses that should probably follow them. Achieving this is important, but improperly done it can easily come to resemble the “top 25″ lists from RIAA and MPAA that became so controversial and counterproductive a few years ago. The “top 25″ lists became controversial partly because their methodology was suspect, partly because the underlying data were never available, and partly because they ignored the other end of the continuum, that is, institutions that had somehow managed to elicit very few Digital Millennium Copyright Act (DMCA) notices.

PirateBay_1_NETT_26916dIt’s clear there are various sources of data, even without internal access to campus network data:

  • counts of DMCA notices sent by various copyright holders (some of which send notices methodically, following reasonably robust and consistent procedures, and some of which don’t),
  • counts of queries involving major infringing sites, and/or
  • network volume measures for major infringing protocols.

Those last two yield voluminous data, and so usually require sampling or data reduction of some kind. And not all queries or protocols they follow involve infringement. It’s also clear, from earlier studies, that there’s substantial variation in these counts over time and even across similar campuses.

This means it will be important for my database, if I can create one, to include several different measures, especially counts from different sources for different materials, and to do that over a reasonable period of time. Integrating all this into a single dataset will require lots of collaboration among the providers. Moreover, the raw data necessarily will identify individual institutions, and releasing them that way would probably cause more opposition than support. Clumping them all together would bypass that problem, but also cover up important variation. So it makes much more sense to disguise rather than clump — that is, to identify institutions by a code name and enough attributes to describe them but not to identify them.

It’ll then be important to be transparent: to lay out the detailed methodology used to “rank” campuses (as, for example, US News now does), and to share the disguised data so others can try different methodologies.

big_dataAt a more general level, what I draw from the various examples is this: If organizations are to set policy and frame practice based on data — to become “data-driven organizations,” in the current parlance — then they must put serious effort into the source, quality, and accessibility of data. That’s especially true for “big data,” even though many current “big data” advocates wrongly believe that volume somehow compensates for quality.

If we’re going to have productive debates about policy and practice in connection with copyright infringment or anything else, we need to listen to Moynihan: To have our own opinions, but to share our data.

Three Fallacies: Optimal Diet, Best Practices, and Key Indicators

ntn(126788, 10)Just before writing this (and then losing most of it to a Chrome freeze, and then rewriting it), I had a sort-of-Ploughman’s lunch: a couple of Wasa Wholegrain crackers spread with about 1 ounce of nice smelly Buttermilk Blue cheese, and a Pink Lady apple, and a glass of water.

For yesterday’s lunch I mixed some canned white tuna with with nonfat Greek yogurt and mayo, and put it on Wasa crackers.

Which lunch was better? How might I measure that?

Here are some data from Peapod prices (even though I didn’t buy these ingredients there): prices per serving and nutrition info from the standard labels:

servings cost/serving fat (g) calories fiber (g) protein (g)
cheese 1 $1.16 8.0 100 1.0 6.0
crackers 2 $0.18 0.0 40 2.0 1.0
apple 1 $0.75 0.3 95 4.4 0.5
Today   $2.26 8.3 275 9.4 8.5
tuna 1 $0.95 1.0 70 0.0 14.0
crackers 2 $0.18 0.0 40 2.0 1.0
yogurt 1 $0.28 0.0 15 0.0 2.6
mayo 1 $0.18 10.0 90 0.0 0.0
Yesterday   $1.76 11.0 255 4.0 18.6


Today’s lunch cost $2.26, which is about 1/3 more than yesterday’s. Were I focused on cost, therefore, I couldn’t rate today’s lunch as highly as yesterday’s. I have excellent, robust cost indicators to make this judgment, and so it’s pretty clear how to assess practice if minimizing lunch cost is my goal.

ntn(191171, 10)Then again, I’m of the age where I need to be careful what I eat (note “need to be”, not “am”), and so maybe minimizing cost isn’t the right goal. Instead, perhaps I should look at nutritional indicators. Today’s lunch had 8.3 grams of fat, mostly from the cheese, and 275 calories. Yesterday’s was similar in those respects, with 11 grams of fat, mostly from the mayo, and 255 calories. So fat and calories don’t give me a clear indication which lunch is better.

I’m told that fiber is good, though. Today’s lunch is better than yesterday’s fiber-wise: 9.4 versus 4 grams. Then again, protein is also good, and here the indicator tilts the other way: yesterday’s 18.6 grams of protein trumps today’s 8.5 grams.

I’ve got measures of my two lunches’ nutritional attributes — not as robust as my cost measures (see, for example, this recent Fox News story), but still pretty good. However, unlike my single measure of cost, I have multiple measures of nutrition, and they’re divergent: even the few measures on the standard label value the lunches differently. I may choose different indicators than someone else — and I may choose differently some other day  if, say, my cholesterol levels change.

imgresTrying to incorporate both nutritional goals (as standards to be met) and cost (as an outcome to be minimized) into an optimal diet, George Stigler, in a 1945 article, tried to determine the least expensive nutritionally adequate diet for a 70-kg male economist — that is, himself. Using 1944 products, prices, and then-current Recommended Daily Allowances (which included calories, protein, calcium, iron, and five vitamins), and after laborious analysis, he proposed an optimal daily diet comprising about 23 ounces of wheat flour (!), 5 ounces of cabbage, 1 ounce of spinach, 6 ounces of pancake flour, and 1 ounce of pork liver. Stigler estimated this diet would cost 16¢/day, which would be $2.08 in 2011 dollars. (Stigler never tried this diet, and neither did his son, who was a faculty member at UChicago during my tenure there.)

Seven years later, George Dantzig developed the Simplex algorithm for solving linear-programming problems like this. Today there are simple online or sophisticated spreadsheet tools available to explore the now-famous Diet Problem — for example, Stefan Warner’s  web tool, or a more comprehensive Excel-based one developed by Samir Khan.

Playing around with the various tools, one thing becomes clear immediately: results vary dramatically depending on exactly how one bounds the problem. As we already know from my lunches, the “optimal” diet depends on what foods are considered, and on which nutritional requirements one chooses to impose on them.

imgresThus, for example, Warner’s default settings include 20 foods, use 2008 RDAs, allow no more than 2 servings of any one food, and impose requirements for 10 nutrients (minima for calories, fat, carbohydrates, protein, vitamin C, sodium, fiber, vitamin A, and calcium, and a maximum for cholesterol —  Warner  adds fat and fiber to Stigler’s 9 nutrients, and omits iron). These settings yield a daily diet comprising 1.6 servings of spaghetti with sauce plus 2 servings each of broccoli, potatoes, banana, wheat bread, lowfat milk, eggs, and white rice. According to the web tool, the default Warner diet costs $2.87/day, or $3.14 in 2011 dollars.

imgresUsing Khan’s Excel-based tool, its more limited list of foods, and its longer list of 14 nutrients (most of which have both a minimum and a maximum), a cost-optimized diet runs $10.71/day: 3.1 servings of lentils, 2.9 of bagels, 2.3 of roast chicken, 2.2 of Brussels sprouts, 2.1 of oatmeal, 1.7 of 1% milk, 1.2 of oranges, and 1 of broccoli.

No one who’s ever paid close attention to dietary recommendations is surprised. The best diet depends on what one has at hand, and what one means by “best” — what micro-economists would call one’s “utility function.” Given this, it’s hard to make sense of all-in-one, impersonal key indicators like the ANDI (Aggregate Nutrient Density Index) numbers prominently displayed at Whole Foods.

Back to lunch. Although yesterday’s lunch was good, I liked today’s much more.  It was satisfying and tasty. The crackers were firm and crisp, an excellent base for the strongly-flavored cheese. The apple tied it all together very nicely, adding sweetness and juiciness. In gastronomic terms, the lunch rated very highly.

But maybe that’s just because I was in the mood for cheese today. Not only is there no obvious robust measure of gastronomic appeal, but if there were, it might vary both from person to person and time to time.

So which lunch was better? It depends on what I choose to value.

As For Diet,
So For  IT “Best Practices” & “Key Performance Indicators”

imgresBest practices in IT depend on context and goals even more than diet does. Yet somehow we’ve come to believe there’s a one-size-fits-all optimum out there — documented by an ANDI for IT — and that if we can find it all will be well. We’ve spent large amounts of time and money on the quest for these “best practices,” often hiring consultants to “optimize” IT practice.

A recent cursory survey of research university CIOs, for example, found that at least 18 of them had undertaken optimization projects, most of them involving outside firms such as Bain, McKinsey, PriceWaterhouseCoopers, Accenture,  and their kith. (I’ve been through two of these: an early effort at MIT involving CSC Index, and a more recent one at UChicago involving McKinsey.)

Here’s what I think: too often our quest for best practices — especially when it’s a quest guided by outside entities — is based on goals that may not be what we want, or at least may not be all that we want. What Washington College wants IT to achieve may differ from what George Washington University wants IT to achieve, and probably neither has the same goals as the Chicago City Colleges or the University of Phoenix or the EdX consortium.

imgresConsider IT support, for example. Users seem to be most satisfied when they can choose their own technologies, and the institution provides a knowledgeable IT support person they trust — ideally down the hall, so that sticking one’s head out the door and saying “Pat, can you come help me please?” brings an expert Pat running.

Unfortunately, that “local” support model is expensive, both because it requires flexible IT support staff who are skilled with diverse technologies and because it inhibits economy of scale. Conversely, central administrators and their consultants focus on costs, and so tend to value support strategies that reduce cost: standardization, tiered support, and even consolidated outsourcing.

But cost-reduction strategies are almost precisely antithetical to user-satisfaction strategies. Neither is “right” in any objective sense; indeed, the point is that although it’s quite possible to develop each strategy and measure whether it’s working, whether that’s “right” depends on the original goal.

Measurement Isn’t the Same as Evaluation

The point of all this should be obvious: it’s pointless to talk about “best practices” or to use “key performance indicators” until those involved at least understand and appreciate each other’s goals — in lunch terms, they know who wants cheap, who wants nutritious, and who wants tasty, and maybe have negotiated some compromises. Don’t read that sentence as being anti-data: data are good, and the more of them and the higher their quality the better, but that one has data on some attribute doesn’t mean that attribute signifies value — or that the absence of data signifies the absence of value. Language is important: a “datum” is value-neutral, for example, whereas a “score” isn’t. “Index tilts toward “score”, “indicator” toward “datum”. “Practice” is neutral, “best practice” isn’t. And so on.

Also, “those involved,” in higher-education IT, typically entails an awkward triangle: IT organizations provide services to users, who seek maximum service levels, but IT organizations get resources from central administration, which seeks minimum expenditure. Goal divergence results, one of many reason there’s such frustration within higher-education IT these days. Without mutual understanding and agreement on goals, there’s no such thing as “best practice,” no matter how many “key performance indicators” are available.

urlThat I hate watermelon and love bacon can’t govern our family diet. The bacon is intrinsically controversial (tasty but fatty, so even without talking to anyone else I’m conflicted), whereas the watermelon admits compromise (my wife and son eat it, and I don’t).

All of this is making me hungry…





The Importance of Being Enterprise

…as Oscar Wilde well might have titled an essay about campus-wide IT, had there been such a thing back then.

Enterprise IT it accounts for the lion’s share of campus IT staffing, expenditure, and risk. Yet it receives curiously little attention in national discussion of IT’s strategic higher-education role. Perhaps that should change. Two questions arise:

  • What does “Enterprise” mean within higher-education IT?
  • Why might the importance of Enterprise IT evolve?

What does “Enterprise IT” mean?

Here are some higher-education spending data from the federal Integrated Postsecondary Education Data Service (IPEDS), omitting hospitals, auxiliaries, and the like:

Broadly speaking, colleges and universities deploy resources with goals and purposes that relate to their substantive mission or the underlying instrumental infrastructure and administration.

  • Substantive purposes and goals comprise some combination of education, research, and community service. These correspond to the bottom three categories in the IPEDS graph above. Few institutions focus predominantly on research—Rockefeller University, for example. Most research universities pursue all three missions, most community colleges emphasize the first and third, and most liberal-arts colleges focus on the first.
  • Instrumental activities are those that equip, organize, and administer colleges and universities for optimal progress toward their mission—the top two categories in the IPEDS graph. In some cases, core activities advance institutional mission by providing a common infrastructure for the latter. In other cases, they do it by providing campus-wide or departmental staffing, management, and processes to expedite mission-oriented work. In still other cases, they do it through collaboration with other institutions or by contracting for outside services.

Education, research, and community service all use IT substantively to some extent. This includes technologies that directly or indirectly serve teaching and learning, technologies that directly enable research, and technologies that provide information and services to outside communities—for examples of all three, classroom technologies, learning management systems, technologies tailored to specific research data collection or analysis, research data repositories, library systems, and so forth.

Instrumental functions rely much more heavily on IT. Administrative processes rely increasingly on IT-based automation, standardization, and outsourcing. Mission-oriented IT applications share core infrastructure, services, and support. Core IT includes infrastructure such as networks and data centers, storage and computational clouds, and desktop and mobile devices; administrative systems ranging from financial, HR, student-record, and other back office systems to learning-management and library systems; and communications, messaging, collaboration, and social-media systems.

In a sense, then, there are six technology domains within college and university IT:

  • the three substantive domains (education, research, and community service), and
  • the three instrumental domains (infrastructure, administration, and communications).

Especially in the instrumental domains, “IT” includes not only technology, but also the services, support, and staffing associated with it. Each domain therefore has technology, service, support, and strategic components.

Based on this, here is a working definition: in in higher education,

“Enterprise” IT comprises the IT-related infrastructure, applications, services, and staff
whose primary institutional role is instrumental rather than substantive.

To explore Enterprise IT, framed thus, entails focusing on technology, services, and support as they relate to campus IT infrastructure, administrative systems, and communications mechanisms, plus their strategic, management, and policy contexts.

Why Might the Importance of Enterprise IT Evolve?

Three reasons: magnitude, change, and overlap.


According data from EDUCAUSE’s Core Data Service (CDS) and the federal Integrated Postsecondary Data System (IPEDS), the typical college or university spends just shy of 5% of its operating budget on IT. This varies a bit across institutional types:

We lack good data breaking down IT expenditures further. However, we do have CDS data on how IT staff distribute across different IT functions. Here is a summary graph, combining education and research into “academic” (community service accounts for very little dedicated IT effort):

Thus my assertion above that Enterprise IT accounts for the lion’s share of IT staffing. Even if we omit the “Management” component, Enterprise IT comprises 60-70% of staffing including IT support, almost half without. The distribution is even more skewed for expenditure, since hardware, applications, services, and maintenance are disproportionately greater in Administration and Infrastructure.

Why, given the magnitude of Enterprise relative to other college and university IT, has it not been more prominent in strategic discussion? There are at least two explanations:

  • relatively slow change in Enterprise IT, at least compared to other IT domains (rapidly-changing domains rightly receive more attention that stable ones), and
  • overlap—if not competition—between higher-education and vendor initiatives in the Enterprise space.


Enterprise IT is changing thematically, driven by mobility, cloud, and other fundamental changes in information technology. It also is changing specifically, as concrete challenges arise.

Consider, as one way to approach the former, these five thematic metamorphoses:

  • In systems and applications, maintenance is giving way to renewal. At one time colleges and universities developed their own administrative systems, equipped their own data centers, and deployed their own networks. In-house development has given way to outside products and services installed and managed on campus, and more recently to the same products and services delivered in or from the cloud.
  • In procurement and deployment, direct administration and operations are giving way to negotiation with outside providers and oversight of the resulting services. Whereas once IT staff needed to have intricate knowledge of how systems worked, today that can be less useful that effective negotiation, monitoring, and mediation.
  • In data stewardship and archiving, segregated data and systems are giving way to integrated warehouses and tools. Historical data used to remain within administrative systems. The cost of keeping them “live” became too high, and so they moved to cheaper, less flexible, and even more compartmentalized media. The plunging price of storage and the emergence of sophisticated data warehouses and business-intelligence systems reversed this. Over time, storage-based barriers to data integration have gradually fallen.
  • In management support, unidimensional reporting is giving way to multivariate analytics. Where once summary statistics emerged separately from different business domains, and drawing inferences about their interconnections required administrative experience and intuition, today connections can be made at the record level deep within integrated data warehouses. Speculating about relationships between trends is giving way to exploring the implications of documented correlations.
  • In user support, authority is giving way to persuasion. Where once users had to accept institutional choices if they wanted IT support, today they choose their own devices, expect campus IT organizations to support them, and bypass central systems if support is not forthcoming. To maintain the security and integrity of core systems, IT staff can no longer simply require that users behave appropriately; rather, they must persuade users to do so. This means that IT staff increasingly become advocates rather than controllers. The required skillsets, processes, and administrative structures have been changing accordingly.

Beyond these broad thematic changes, a fourfold confluence is about to accelerate change in Enterprise IT: major systems approaching end-of-life, the growing importance of analytics, extensive mobility supported by third parties, and the availability of affordable, capable cloud-based infrastructure, services, and applications.

Systems Approaching End-of-Life

In the mid-1990s, many colleges and universities invested heavily in administrative-systems suites, often (if inaccurately) called “Enterprise Reporting and Planning” systems or “ERP.” Here, again drawing on CDS, are implementation data on Student, Finance, and HR/Payroll systems for non-specialized colleges and universities:

The pattern of implementation varies slightly across institution types. Here, for example, are implementation dates for Finance systems across four broad college and university groups:

Although these systems have generally been updated regularly since they were implemented, they are approaching the end of their functional life. That is, although they technically can operate into the future, the functionality of turn-of-the-century administrative systems likely falls short of what institutions currently require. Such functional obsolescence typically happens after about 20 years.

The general point holds across higher education: A great many administrative systems will reach their 20-year anniversaries over the next several years.

Moreover, many commercial administrative-systems providers end support for older products, even if those products have been maintained and updated. This typically happens as new products with different functionality and/or architecture establish themselves in the market.

These two milestones—functional obsolescence and loss of vendor support—mean that many institutions will be considering restructuring or replacement of their core administrative systems over the next few years. This, in turn, means that administrative-systems stability will give way to 1990s-style uncertainty and change.

Growing Importance of Analytics

Partly as a result of mid-1990s systems replacements, institutions have accumulated extensive historical data from their operations. They have complemented and integrated these by implementing flexible data-warehousing and business-intelligence systems.

Over the past decade, the increasing availability of sophisticated data-mining tools has given new purpose to data warehouses and business-intelligence systems that have until now have largely provided simple reports. This has laid foundation for the explosive growth of analytic management approaches (if, for the present, more rhetorical than real) in colleges and universities, and in the state and federal agencies that fund and/or regulate them.

As analytics become prominent in areas ranging from administrative planning to student feedback, administrative systems need to become better integrated across organizational units and data sources. The resulting datasets need to become much more widely accessible while complying with privacy requirements. Neither of these is easy to achieve. Achieving them together is more difficult still.

Mobility Supported by Third Parties

Until about five years ago campus communications—infrastructure and services both—were largely provided and controlled by institutions. This is no longer the case.

Much networking has moved from campus-provided wired and WiFi facilities to cellular and other connectivity provided by third parties, largely because those third parties also provide the mobile end-user devices students, faculty, and staff favor.

Separately, campus-provided email and collaboration systems have given way to “free” third-party email, productivity, and social-media services funded by advertising rather than institutional revenue. That mobile devices and their networking are largely outside campus control is triggering fundamental rethinking of instruction, assessment, identity, access, and security processes. This rethinking, in turn, is triggering re-engineering of core systems.

Affordable, Capable Cloud

Colleges and universities have long owned and managed IT themselves, based on two assumptions: that campus infrastructure needs are so idiosyncratic that they can only be satisfied internally, and that campuses are more sophisticated technologically than other organizations.

Both assumptions held well into the 1990s. That has changed. “Outside” technology has caught up to and surpassed campus technology, and campuses have gradually recognized and begun to avoid the costs of idiosyncrasy.

As a result, outside services ranging from commercially hosted applications to cloud infrastructure are rapidly supplanting campus-hosted services. This has profound implications for IT staffing—both levels and skillsets.

The upshot is that Enterprise, already the largest component of higher-education IT, is entering a period of dramatic change.

Beyond change in IT, the academy itself is evolving dramatically. For example, online enrollment is becoming increasingly common. As the Sloan Foundation reports, the fraction of students taking some or all of their coursework online is increasing steadily:

This has implications not only for pedagogy and learning environments, but also for the infrastructure and applications necessary to serve remote and mobile students.

Changes in the IT and academic enterprises are one reason Enterprise IT needs more attention. A second is the panoply of entities that try to influence Enterprise IT.


One might expect colleges and universities to have relatively consistent requirements for administrative systems, and therefore that the market for those would consist largely of a few major widely-used products. The facts are otherwise. Here are data from the recent EDUCAUSE Center for Applied Research (ECAR) research report The 2011 Enterprise Application Market in Higher Education:

The closest we come to a compact market is for learning management systems, where 94% of installed systems come from the top 5 vendors. Even in this area, however, there are 24 vendors and open-source groups. At the other extreme is web content management, where 89 active companies and groups compete and the top providers account for just over a third of the market.

One way major vendors compete under circumstances like these is by seeking entrée into the informal networks through which institutions share information and experiences. They do this, in many cases, by inviting campus CIOs or administrative-systems heads to join advisory groups or participate in vendor-sponsored conferences.

That these groups are usually more about promoting product than seeking strategic or technical advice is clear. They are typically hosted and managed by corporate marketing groups, not technical groups. In some cases the advisory groups comprise only a few members, in some cases they are quite large, and in a few cases there are various advisory tiers. CIOs from large colleges and universities are often invited to various such groups. For the most part these groups have very little effect on vendor marketing, and even less on technical architecture and direction.

So why do CIOs attend corporate advisory board meetings? The value to CIOs, aside from getting to know marketing heads, is that these groups’ meetings provide a venue for engaging enterprise issues with peers. The problem is that the number of meetings and their oddly overlapping memberships lead to scattershot conversations inevitably colored by the hosts’ marketing goals and technical choices. It is neither efficient nor effective for higher education to let vendors control discussions of Enterprise IT.

Before corporate advisory bodies became so prevalent, there were groups within higher-education IT that focused on Enterprise IT and especially on administrative systems and network infrastructure. Starting with 1950s workshops on the use of punch cards in higher education, CUMREC hosted meetings and publications focused on the business use of information technology. CAUSE emerged from CUMREC in the late 1960s, and remained focused on administrative systems. EDUCOM came into existence in the mid-1960s, and its focus evolved to complement those of CAUSE and CUMREC by addressing joint procurement, networking, academic technologies, copyright, and in general taking a broad, inclusive approach to IT. Within EDUCOM, the Net@EDU initiative focused on networking much the way CUMREC focused on business systems.

As these various groups melded into a few larger entities, especially EDUCAUSE, Enterprise IT remained a focus, but it was only one of many. Especially as the y2k challenge prompted increased attention to administrative systems and intensive communications demands prompted major investments in networking, the prominence of Enterprise IT issues in collective work diffused further. Internet2 became the focal point for networking engagements, and corporate advisory groups became the focal point for administrative-systems engagements. More recently, entities such as Gartner, the Chronicle of Higher Education, and edu1world have tried to become influential in the Enterprise IT space.

The results of the overlap among vendor groups and associations, unfortunately, are scattershot attention and dissipated energy in the higher-education Enterprise IT space. Neither serves higher education well. Overlap thus joins accelerated change as a major argument for refocusing and reenergizing Enterprise IT.

The Importance of Enterprise IT

Enterprise IT, through its emphasis on core institutional activities, is central to the success of higher education. Yet the community’s work in the domain has yet to coalesce into an effective whole. Perhaps this is because we have been extremely respectful of divergent traditions, communities, and past achievements.

We must not be disrespectful, but it is time to change this: to focus explicitly on what Enterprise IT needs in order to continue advancing higher education, to recognize its strategic importance, and to restore its prominence.

9/25/12 gj-a  

The Rock, and The Hard Place

Looking into the near-term future—say, between now and 2020—we in higher-education IT have to address two big challenges. Neither admits easy progress. But if we don’t address them, we’ll find ourselves caught between a rock and a hard place.

  • The first challenge, the rock, is to deliver high-quality, effective e-learning and curriculum at scale. We know how to do part of that, but key pieces are missing, and it’s not clear how will find them.
  • The second challenge, the hard place, is to recognize that enterprise cloud services and personal devices will make campus-based IT operations the last rather than the first resort. This means everything about our IT base, from infrastructure through support, will be changing just as we need to rely on it.

“But wait,” I can hear my generation of IT leaders (and maybe the next) say, “aren’t we already meeting those challenges?”

If we compare today’s e-learning and enterprise IT with that of the recent past, those leaders might rightly suggest, immense change is evident:

  • Learning management systems, electronic reserves, video jukeboxes, collaboration environments, streamed and recorded video lectures, online tutors—none were common even in 2000, and they’re commonplace today.
  • Commercial administrative systems, virtualized servers, corporate-style email, web front ends—ditto.

That’s progress and achievement we all recognize, applaud, and celebrate. But that progress and achievement overcame past challenges. We can’t rest on our laurels.

We’re not yet meeting the two broad future challenges, I believe, because in each case fundamental and hard-to-predict change lies ahead. The progress we’ve made so far, however progressive and effective, won’t steer us between the rock of e-learning and the hard place of enterprise IT.

The fundamental change that lies ahead for e-learning
is the the transition from campus-based to distance education

Back in the 1990s, Cliff Adelman, then at the US Department of Education, did a pioneering study of student “swirl,” that is, students moving through several institutions, perhaps with work intervals along the way,before earning degrees.

“The proportion of undergraduate students attending more than one institution,” he wrote, “swelled from 40 percent to 54 percent … during the 1970s and 1980s, with even more dramatic increases in the proportion of students attending more than two institutions.” Adelman predicted that “…we will easily surpass a 60 percent multi-institutional attendance rate by the year 2000.”

Moving from campus to campus for classes is one step; taking classes at home is the next. And so distance education, long constrained by the slow pace and awkward pedagogy of correspondence courses, has come into its own. At first it was relegated to “nontraditional” or “experimental” institutions—Empire State College, Western Governors University, UNext/Cardean (a cautionary tale for another day), Kaplan. Then it went mainstream.

At first this didn’t work:, for example, a collaboration among several first-tier research universities led by Columbia, found no market for its high-quality online offerings. (Its Executive Director has just written a thoughtful essay on MOOCs, drawing on her experience.)

Today, though, a great many traditional colleges and universities successfully bring instruction and degree programs to distant students. Within the recent past these traditional institutions have expanded into non-degree efforts like OpenCourseWare and to broadcast efforts like the MOOC-based Coursera and edX. In 2008, 3.7% of students took all their coursework through distance education, and 20.4% took at least one class that way.

Learning management systems, electronic reserves, video jukeboxes, collaboration environments, streamed and recorded video lectures, online tutors, the innovations that helped us overcome past challenges—little of that progress was designed for swirling students who do not set foot on campus.

We know how to deliver effective instruction to motivated students at a distance. Among policy issues we have yet to resolve, we don’t yet know how to

  • confirm their identity,
  • assess their readiness,
  • guide their progress,
  • measure their achievement,
  • standardize course content,
  • construct and validate curriculum across diverse campuses, or
  • certify degree attainment

in this imminent world. Those aren’t just IT problems, of course. But solving them will almost certainly challenge IT.

The fundamental change that lies ahead for enterprise technologies
is the transition from campus IT to cloud and personal IT

The locus of control over all three principal elements of campus IT—servers and services, networks, and end-user devices and applications—is shifting rapidly from the institution to customers and third parties.

As recently as ten years ago, most campus IT services, everything from administrative systems through messaging and telephone systems to research technologies, were provided by campus entities using campus-based facilities, sometimes centralized and sometimes not. The same was true for the wired and then wireless networks that provided access to services, and for the desktop and laptop computers faculty, students, and staff used.

Today shared services are migrating rapidly to servers and systems that reside physically and organizationally elsewhere—the “cloud”—and the same is happening for dedicated services such as research computing. It’s also happening for networks, as carrier-provided cellular technologies compete with campus-provided wired and WiFi networking, and for end-user devices, as highly mobile personal tablets and phones supplant desktop and laptop computers.

As I wrote in an earlier post about “Enterprise IT,” the scale of enterprise infrastructure and services within IT and the shift in their locus of control have major implications for and the organizations that have provided it. Campus IT organizations grew up around locally-designed services running on campus-owned equipment managed by internal staff. Organization, staffing, and even funding models ensued accordingly. Even in academic computing and user support, “heavy metal” experience was valued highly. The shifting locus of control makes other skills at least as valuable: the ability to negotiate with suppliers, to engage effectively with customers (indeed, to think of them as “customers” rather than “users”), to manage spending and investments under constraint, to explain.

To be sure, IT organizations still require highly skilled technical staff, for example to fine-tune high-performance computing and networking, to ensure that information is kept secure, to integrate systems efficiently, and to identify and authenticate individuals remotely. But these technologies differ greatly from traditional heavy metal, and so must enterprise IT.

The rock, IT, and the hard place

In the long run, it seems to me that the campus IT organization must evolve rapidly to center on seven core activities.

Two of those are substantive:

  • making sure that researchers have the technologies they need, and
  • making sure that teaching and learning benefit from the best thinking about IT applications and effectiveness.

Four others are more general:

  • negotiating and overseeing relationships with outside providers;
  • specifying or doing what is necessary for robust integration among outside and internal services;
  • striking the right personal/institutional balance between security and privacy for networks, systems, and data; and last but not least
  • providing support to customers (both individuals and partner entities).

The seventh core activity, which should diminish over time, is

  • operating and supporting legacy systems.

Creative, energetic, competent staff are sine qua non for achieving that kind of forward-looking organization. It’s very hard to do good IT without good, dedicated people, and those are increasingly difficult to find and keep. Not least, this is because colleges and universities compete poorly with the stock options, pay, glitz, and technology the private sector can offer. Therein lies another challenge: promoting loyalty and high morale among staff who know they could be making more elsewhere.

To the extent the rock of e-learning and the hard place of enterprise IT frame our future, we not only need to rethink our organizations and what they do; we also need to rethink how we prepare, promote, and choose leaders for higher-education leaders on campus and elsewhere—the topic, fortuitously, of a recent ECAR report, and of widespread rethinking within EDUCAUSE.

We’ve been through this before, and risen to the challenge.

  • Starting around 1980, minicomputers and then personal computers brought IT out of the data center and into every corner of higher education, changing data center, IT organization, and campus in ways we could not even imagine.
  • Then in the 1990s campus, regional, and national networks connected everything, with similarly widespread consequences.

We can rise to the challenges again, too, but only if we understand their timing and the transformative implications.

The Ghost is Ready, but the Meat is Raw

Old joke. Someone writes a computer program (creates an app?) that translates from English into Russian (say) and vice versa. Works fine on simple stuff, so the next test is a a bit harder: “the spirit is willing, but the flesh is weak.”  The program/app translates the phrase into Russian, then the tester takes the result, feeds it back into the program/app, and translates it back into English. Result: “The ghost is ready, but the meat is raw.”

(The starting phrase is from Matthew 26:41 – the King James version has “indeed” before “willing”, ASV doesn’t, and weirdly enough, if you try this in Google Translate, the joke falls flat, because you get an accurate translation to Russian and back, except for some reason you end up with an extra “indeed” in the final version. It’s almost as though Google Translate has figured out where the quotation came from, and then substituted the King James version for the ASV one, but not quite correctly. Spooky. But I digress.)

Old joke, yes. Tired, even. But, as usual, it’s a metaphor, in this case for a problem that will only become larger as higher education outsources or contracts for ever more of its activity: we think we’ve doing the right thing when we contract with outside providers, but the actual effect of the contract, once it takes effect, isn’t quite what we expected. If we’re lucky, we figure this out before we’re irrevocably committed. If we’re unlucky, we box ourselves in.

Two examples.

1. Microsoft Site Licensing

About a decade ago, several of us were at an Internet2 meeting. A senior Microsoft manager spoke about relations with higher education (although looking back, I can’t see why Microsoft would present at I2. Maybe it wasn’t an I2 meeting, but let’s just say it was — never let truth get in the way of a good story). At the time, instead of buying a copy of Office for each computer, as Microsoft licenses required, many students, staff, and faculty simply installed Microsoft Office on multiple machines from one purchased copy — or even copied the installation disks and passed them around. That may save money, but it’s copyright infringement, and illegal.

Microsoft’s response to this problem had been threefold:

  • it began incorporating copy protection and other digital-rights-management (DRM) mechanisms into its installation media so that they couldn’t be copied,
  • it began berating campuses for tolerating the illegal copying (and in some cases attempted to audit compliance with licenses by searching campus computers for illegally obtained software), and
  • it sought to centralize campus procurement of Microsoft software by tailoring and refining its so-called “Select” volume-discount program to encourage campuses to license software campus-wide.

Problem was, the “Select” agreement required campuses to count how many copies of software they licensed, and to maintain records that would enable Microsoft to determine whether each installed copy on campus was properly licensed. This entailed elaborate bookkeeping and tracking mechanisms, exposed campuses to audit risk, and its costs into the future were unpredictable. The volume-discount “Select” program was clearly a step forward, but it fell far short of actually appealing to campuses.

So the several of us in the Internet2 session (or wherever it was) took the Microsoft manager aside afterwards, told him Microsoft needed a more attractive licensing model for campuses, and suggested what that might be.

To our surprise, Microsoft followed up, and the rump-group discussions evolved into the initial version of the Microsoft Campus Agreement. The Campus Agreement (since replaced by Enrollment for Education Solutions, EES) was a true site license: glossing over some complexities and details, its general terms were that campuses would pay Microsoft based on their size and the number of different products they wished to license, and in return would be permitted to use as many copies of those products as they liked.

Most important from the campus perspective, the Campus Agreement included no requirement to track or count individual copies of the licensed products, thereby making all copies legal; in fact, campuses could make their own copies of installation media. Most important from the Microsoft perspective, Campus Agreement pricing was set so that the typical campus would still pay Microsoft about as much as Microsoft had been receiving from that campus’s central or departmental users for Select or individual copies; that is, Micorsoft’s revenue from campuses would not decline.

The Campus Agreement did entail a fundamental change that was less appealing. In effect, campuses were paying to rent software, with Microsoft agreeing to provide updates at no additional cost, rather than campuses buying copies and then periodically paying to update them. Although it included a few other lines, for the most part the Campus Agreement covered Microsoft’s operating-system and Office products.

Win-win, right? Lots of campuses signed up for the Campus Agreement. It largely eliminated talk about “piracy” of MS-Office products in higher education (enhanced DRM played an important role in this too), and it stabilized costs for most Microsoft client software. It was very popular with students, faculty, and staff, especially since the Campus Agreement allowed institutionally-provided software to be installed on home computers.

But at least one campus, which I’ll call Pi University, balked. The Campus Agreement, PiU’s golf-loving CIO pointed out, had a provision no one had read carefully: if PiU withdrew from the Campus Agreement, he said, it might be required to list and pay for all the software copies that PiU or its students, faculty, and staff had acquired under the Campus Agreement — that is, to buy what it had been renting. The PiU CIO said that he had no way to comply with such a provision, and that therefore PiU could not in good faith sign an agreement that included it.

Some of us thought the PiU CIO’s point was valid but inconsequential. First, some of us didn’t believe that Microsoft would ever enforce the buy-what-you’d-rented clause, so that it presented little actual risk. Second, some of us pointed out that since there was no requirement that campuses document how many copies they distributed, and in general the distribution would be independent of Microsoft, a campus leaving the Campus Agreement could simply cite any arbitrary number of copies as the basis for its exit payment. Therefore, even if Microsoft enforced the clause, estimating the associated payment was entirely under the campus’s control. Those of who believed these arguments went forward with the Campus Agreement; Pi University didn’t.

So the ghost was ready (higher education had gotten most of what it wanted), but the meat was raw (what we wanted turned out problematic in ways no one had really thought through).

Now let’s turn to a more current case.

2. Outsourcing Campus Bookstores

In February 2012 EDUCAUSE agreed to work with Internet2 on an electronic textbooks pilot. This was to be the third in a series of pilots: Indiana University had undertaken one for the fall of 2011, it and a few other campuses had worked with Internet2 on second proof-of-concept pilot for the spring of 2012, and the third pilot was to include a broader array of  institutions.

Driving these efforts were the observations that textbook prices figured prominently in spiraling out-of-pocket college-attendance costs, that electronic textbooks might help attenuate those prices, and that electronic textbooks also might enable campuses to move from individual student purchases to more efficient site licenses, perhaps bypassing unnecessary intermediaries.

A small team planned the pilot, and began soliciting participation in mid-March. By April 7, the initial deadline, 70 institutions had expressed interest. Over 100 people joined an informational webinar two days later, and it looks as though about 25 institutions will manage to participate and help higher education, publishers, and e-reader providers understand their joint future better.

The ghost/meat example here isn’t the etext pilot itself. Rather, it’s something that caused many interested institutions to withdraw from the pilot: campus bookstore outsourcing.

According to the National Association of College Stores (NACS), there are about 4500 bookstores serving US higher education (probably coincidentally, that’s about the number of degree-granting institutions in the US, of which about two thirds are nonspecialized institutions enrolling more than just a few students). Many stores counted by NACS are simply stores near campuses rather than located on or formally associated with them.

Of the campus-located, campus-associated stores, over 820 are operated under outsourcing contracts by Follett Higher Education Group and about 600 are operated by Barnes & Noble College Booksellers. Another 140 stores are members of the Independent College Bookstore Association (ICBA), and the remainder — I can’t find a good count — are either independent, campus-operated, or operated by some other entity.

The arrangements for outsourced bookstores vary from campus to campus, but they have some features in common. The most prominent of those is the overall deal, which is generally that in return for some degree of exclusivity or special access granted by the campus, the store pays the campus a fee of some kind. The exclusivity or special access may be confined to textbook adoptions, or it may extend to clothing and other items with the campus logo or to computer hardware and software. The payment to the campus may be negotiated explicitly, or it may be a percentage of sales or profit. Some outsourced stores are in campus-owned buildings and pay rent, some own a building part of which is rented to campus offices or activities, and some are freestanding; the associated space payments further complicate the relationship between outsourced stores and campuses but do not change its fundamental dependence on the exchange of exclusivity for fees.

For the most part outsourcing bookstores seems to serve campuses well. Managing orders, inventories, sales, and returns for textbooks and insignia items requires skill and experience with high-volume, low-margin retail, which campus administrators rarely have. Moreover, until recently bookstore operations generally had little impact on campus operations and vice versa.

Because bookstore operations generally stood apart from academic and programmatic activities on campus, negotiating contracts with bookstores generally emphasized “business” issues. Since these for the most part involved money and space, negotiations and contract approvals often remained on the “business” side of campus administration, along with apparently similar issues like dining halls, fleet maintenance, janitorial service, lab supply, and so forth. Again, this served campuses well: the campus administrators most attuned to operations and finance (chief finance officers, chief administrative officers, heads of auxiliary services) were the right ones to address bookstore issues.

Over the past few years this changed, first gradually and then more abruptly.

  • First, having bookstores handle hardware and software sales to students (and in some cases departments) came into conflict with campus desires to guide individual choices and maximize support efficiency through standardization and incentives, none of which aligned well with bookstores’ need to maximize profit from IT sales — an important goal, with campus bookstore sales essentially flat since 2005-2006 despite 10%+ enrollment growth.
  • Second, the high price of textbooks drew attention as a major component of growing college costs, and campuses sought to regain some control over it – NACS reports that the average student spends $483 on texts and related materials, that the average textbook price rose from $56 in 2006-2007 to $62 in 2009-2010, and that the typical margin on textbooks is about 22% for new texts and 35% for used ones.
  • Third, as textbooks have begun to migrate from static paper volumes to interactive electronic form, they have come to resemble software more than sweatshirts in that individual student purchases through bookstores may not be the optimal way to distribute or procure them.

That last point — that bookstores may not be the right medium for selling and buying textbooks — potentially threatens the traditional bookstore model, and therefore the outsourcing industry based on it. Not surprisingly, bookstores have responded aggressively to this threat, both offensively and defensively. On the offensive front (I mean this in the sense “trying to advance”, rather than “trying to offend”), the major bookstore chains have invested in e-reader technology, and have begun experimenting extensively with alternative pricing and delivery models. On the defensive front, they have tried to extend past exclusivity clauses to include electronic texts and other new materials.

Many campuses expressed interest in the EDUCAUSE/Internet2 EText Pilot, going so far as to add themselves to a list, make preliminary commitments, and attend the webinar. Filled with enthusiasm, many webinar attendees began talking up the pilot on their campuses, and many of them then ran into a wall: they learned, often only when they double-checked with their counsel in the final stages of applying, that their bookstore contracts — Barnes & Noble and Follett both — precluded their participation in even a pilot exploration of alternative etext approaches, since the right to distribute electronic textbooks was reserved exclusively for the outsourced bookstore.

The CIO from one campus — I’ll call it Omega University — discovered that a recent renewal of the bookstore contract provided that during the 15-year term of the contract, “the Bookstore shall be the University’s  …exclusive seller of all required, recommended or suggested course materials, course packs and tools, as well as materials published or distributed electronically, or sold over the Internet.”  The OmegaU CIO was outraged: “In my mind,” he wrote, “the terms exclusive and over the Internet can’t even be in the same sentence!  And to restrict faculty use of technology for next 15 years is just insane.”

If the last decade has taught us anything, it is that the evolutionary cycle for electronic products is very short, requiring near-constant reappraisal of business models, pricing, and partnerships. That someone on campus signed a contract fixing electronic distribution mechanisms for 15 years may be an extreme case, but we’ve learned even from less pernicious cases  that exclusivity arrangements bound to old business models will drastically constrain progress.

And so the ghost’s readiness again yielded raw meat: technological progress translated well-intentioned, longstanding bookstore contracts that had served campuses well into obstacles impeding even the consideration of important changes.

3. So What Do We Do?

It’s important to draw the right inference from all this.

The problem isn’t simply Microsoft trying to lock customers into the Campus Agreement or bookstore operators being avaricious; rather, they’re acting in self-interest, albeit self-interest that in each case is a bit short-sighted.

The compounding problem is that we in higher education often make decisions too narrowly. In the case of the Campus Agreement, we were so focused on the important move from per-copy to site licensing, a major win, that we didn’t pay sufficient negotiating time or effort to the so-called exit clauses — which, in retrospect, could certainly have been written in much less problematic ways still acceptable to Microsoft. In the case of bookstore contracts, we failed to recognize that what had been a distinct, narrow set of activities readily handled within business and finance was being driven by technology into new domains requiring foresight and expertise generally found elsewhere on campus.

Sadly, there’s no simple solution to this problem. It’s hard to take everything into account or involve every possible constituency in a decision and still get it done, and decisions must get done. Perhaps the best solution we can hope for is better, more transparent discussion of both past decisions and future opportunities, so that we learn collectively and openly from our mistakes, take joint responsibility for our shared technological future, and translate accurately back and forth between what we want and what we get.

Impact of “Adult” and Generic Top-Level Internet Domains on Colleges and Universities

(This is a copy of one of my EDUCAUSE blog posts)

Internet domains in the new “adult” .xxx domain recently became available. So did arbitrary generic top-level domains (gTLDs) beyond the existing .com, .net, .org, .edu, .gov, and so forth. Both initiatives affect higher education. The effects of these initiatives thus far have been modest, but they have been entirely negative. So far as we know, no college or university has benefited from either initiative. Rather, institutions have been exposed to risk and incurred costs without receiving any value in return. On behalf of its members, EDUCAUSE proposes that procedures for issuing and managing generic top-level domains be tightened to reduce their unintended negative effects on colleges and universities.

I discussed the initiatives themselves more fully in an August 2011 post. Now that the initiatives are fully launched, this post provides some additional information and recommendations. I comment first on the risks arising from the .xxx domain, then on the costs institutions have incurred to mitigate those risks, and finally on some issues arising around generic top-level domains. I conclude with a few recommendations for ICANN and gTLD registrars, and one for colleges and universities.

Risks from the .xxx domain

Colleges and universities typically have .edu domains, and use these for their official business. In addition, many institutions have claimed relevant .com, .org, .biz, .info, or .net domains. Stanford University, for example, uses “” for its Web presence, but it also has licensed “” and “”. Similarly, many institutions have claimed relevant domains in selected country top-level domains (cTLDs) such as .us, .mx, .uk, or .cn, typically those where the institution has branch campuses. The goals in these cases typically  have been simply to avoid confusion.

The .xxx domain does more than simply increase the number of top-level domains that might lead to confusion. Institutions worry that purveyors of adult material might explicitly seek to market their wares by associating those wares with college or university names, much as Playboy magazine once did with its “Women of the Ivy League” and similar features, and that this might reflect negatively on a college or university’s reputation. That is, the risks introduced by the .xxx domain go well beyond those already arising from other top-level domains.

The risk is not hypothetical. As Hawaii News Now reported in early February,

The University of Hawaii is demanding the operator of a pornographic web site stop using the school’s name or face legal action. The web site, called, claims to feature what it describes as “hot nude Hawaiian college girls.”  It is full of graphic pictures of men and women having sex on beaches and at other tropical locations.

This is precisely the kind of embarrassment many institutions worried about.

Before the new domain .xxx went live, institutions had the opportunity to block use of their identity in .xxx domains through a so-called “Sunrise B” registration — but only if the institution’s identity (name, team name, nickname, etc.) had been trademarked, and the identity to be blocked precisely matched the trademark. Once the new domain went live, Sunrise B registrations were no longer available, and the only recourse for an institution was to register the potentially offending domain itself once the “Landrush” and “General Availability” periods began– or, if the domain had already been registered, to persuade the registrant to reassign or relinquish it.

Sunrise B, regular registration, and persuasion all entail costs, which brings me to the next section.

Costs to Mitigate .xxx Risks

As I wrote above, institutions could have filed Sunrise B registrations for .xxx domains, and a few institutions did so successfully. Typically a successful Sunrise B registration cost $199 for ten years — but the fee was the same even if the registration was unsuccessful. Some institutions tried to obtain Sunrise B registrations for non-trademarked names, but this did not succeed. One college I’ll call “Alpha” paid $1,000 in an attempt to register five names, only three of which corresponded to registered trademarks. The registrar approved only the trademarked three, but did not refund the $400 Alpha had paid for the other two. Another college, “Beta”, paid $199 for one successful Sunrise B registration, and then obtained General Availability registrations for four others at $99/year per domain.

It’s interesting to note that the cost of a .xxx registration varies from registrar to registrar, from a reported low of $79/year to a reported high of $103; also, some registrars offered only 10-year Sunrise B registrations, while others offered a perpetual option.

An informal survey of EDUCAUSE members found that successful Sunrise B (trademark blocking) registrations varied from none to a high of 22, whereas Landrush and General Availability registrations varied from none to 11. The typical response was 1-3 Sunrise B registrations and about 4 regular registrations. A quick Web search finds myriad other instances of colleges and universities registering .xxx domains.

The names being registered or blocked typically are variations on the institution’s name plus variations on team names. Most institutions report that the process for registering .xxx domains is straightforward and efficient. Although most institutions complained that they should not have to pay to defend their names, few complained about the actual amount of the fees.

Domain squatters — individuals or entities who register domains with the intention of  reselling rather than using them — have been a long-time problem. In the Hawaii case, it’s reported that the entity that registered demanded $100,000 to relinquish it. We have reports of at other institutions being approached by .xxx squatters, but in each case the institution simply refused to deal with the squatter.

Generic Top-Level Domains

Although the idea of a generic top-level domain in a college’s or university’s name is appealing, the logistics of applying for and managing one have kept most institutions from pursuing this option. As one colleague put it,

There are two problems.  First, I have been unable to find a third party to do the registrar function for us (and we are unable to do it ourselves). It seems no one has yet figured out that there is a business opportunity in doing this. Also, the application itself needs to be a multi-hundred page submission to meet the requirements of the guidebook.  I’m actually hoping that will change over time for trademark holders.  If I hold the trademark for [institution name], I don’t see why I need to answer most of the questions in the guidebook.

Unless these two issues are addressed, it is unlikely most colleges or universities will pursue their own gTLD.


Other than the Hawaii case, the new .xxx and gTLD initiatives have mostly caused colleges and universities to divert administrative effort and funds to blocking or registering domains. Even so, we believe that ICANN could impose some simple requirements on new domains such as .xxx that would greatly reduce problems for higher education without materially complicating matters for registrars in those gTLDs.

  1. Automatically impose a Sunrise B block on any domain within a gTLD that corresponds to a registered trademark. That is, if “alphagroup” is a registered trademark, then, for example, the registrar for the .xxx domain should automatically refuse to issue to any entity other than the trademark holder. The simplest way to achieve this would be to require that applicants for a domain affirm, under penalty of perjury, that they have searched the relevant trademark databases and that the domain name they seek does not conflict with any registered trademark. The registrar should then be required to randomly spot-audit some fraction of applications to ensure that affirmations are valid.
  2. Automatically impose a Sunrise B block on any domain name within a gTLD that corresponds to an domain within the .edu, .gov, .mil, or any other similarly regulated gTLDs. That is, if there is already a domain, then the registrar for the .xxx domain, for example, should reject an application for, and similarly for other gTLDs.
  3. For gTLDs designated for potentially offensive material, such as .xxx, impose a waiting period between application and registration during which the application is public and other entities may object to the registration of a particular domain. If someone objects formally to the registration, invoke an arbitration or mediation process to resolve the dispute in a timely way.
  4. For gTLD applications, reject any gTLD suffix that conflicts with a registered trademark unless it is being sought by the trademark holder.

If these requirements had been imposed on the .xxx domain, most of its negative effects on colleges and universities would have been mitigated. Some institutions would still have wanted to claim some .xxx domains as a defensive strategy, but at least they would not have been required to devote extra effort and money to defending names already trademarked.

This leads to one important recommendation for colleges and universities:

  1. Colleges and universities should wherever possible trademark the official name of their institution, the variations on that name and nicknames in common use, and do the same for team names, named schools, departments, institutes, and so forth, and distinctive mottos or slogans.

EDUCAUSE will be continuing to monitor this situation, and to file comments and make recommendations that might produce progress.

Transforming Higher Education through Learning Technology: Millinocket?

Down East

Note to prospective readers: This post has evolved, through extensive revision and expansion and more careful citation, into a paper available at

You might want to read that paper, which is much better and complete, instead of this post — unless you like the pictures here, which for the moment aren’t in the paper. Even if you read this to see the pictures, please go read the other.

“Which way to Millinocket?,” a traveler asks. “Well, you can go west to the next intersection…” the drawling down-east Mainer replies in the Dodge and Bryan story,

“…get onto the turnpike, go north through the toll gate at Augusta, ’til you come to that intersection…. well, no. You keep right on this tar road; it changes to dirt now and again. Just keep the river on your left. You’ll come to a crossroads and… let me see. Then again, you can take that scenic coastal route that the tourists use. And after you get to Bucksport… well, let me see now. Millinocket. Come to think of it, you can’t get there from here.”

PLATO and its programmed-instruction kin were supposed to transform higher education. So were the Apple II, and then the personal computer – PC and then Mac – and then the “3M” workstation (megapixel display, megabyte memory, megaflop speed) for which Project Athena was designed. So were simulated laboratories, so were BITNET and then the Internet, so were MUDs, so was Internet2, so was artificial intelligence, so was supercomputing.

Each of these most certainly has helped higher education grow, evolve, and gain efficiency and flexibility. But at its core, higher education remains very much unchanged. That may no longer suffice.

What about today’s technological changes and initiatives – social media, streaming video, multi-user virtual environments, mobile devices, the cloud? Are they to be evolutionary, or transformational? If higher education needs the latter, can we get there from here?

It’s important to start conversations about questions like these from a common understanding of information technologies that currently play a role in higher education, what that role is, and how technologies and their roles are progressing. That’s what prompted these musings.

Information Technology

For the most part, “information technology” means a tripartite array of hardware and software:

  • end-user devices, which today range from large desktop workstations to small mobile phones, typically with some kind of display, some way to make choices and enter text, and various other capabilities variously enabled by hardware and software;
  • servers, which comprise not just racks of processors, storage, and other hardware but rather are aggregations of hardware, software, applications, and data that provide services to multiple users (when the aggregation is elsewhere, it’s often called “the cloud” today); and
  • networks, wireless or wired, which interlink local servers, remote server clouds, and end-user devices, and which typically comprise copper and glass cabling, routers and switches and optronics, and network operating system plus some authentication and logging capability.

Information technology tends to progress rapidly but unevenly, with progress or shortcomings in one domain driving or retarding progress in others.

Today, for example, the rapidly growing capability of small smartphones has taxed previously underused cellular networks. Earlier, excess capability in the wired Internet prompted innovation in major services like Google and YouTube. The success of Google and Amazon forced innovation in the design, management, and physical location of servers.

Perhaps the most striking aspects of technological progress have been its convergence and integration. Whereas once one could reasonably think separately about servers, networks, and end-user devices, today the three are not only tightly interconnected and interdependent, but increasingly their components are indistinguishable. Network switches are essentially servers, servers often comprise vast arrays of the same processors that drive end-user devices plus internal networks, and end-user devices readily tackle tasks – voice recognition, for example – that once required massive servers.

Access to Information Technology

Progress, convergence, and integration in information technology have driven dramatic and fundamental change in the information technologies faculty, students, colleges, and universities have. That progress is likely to continue.

Here, as a result, are some assumptions we can reasonably make today:

  • Households have some level of broadband access to the Internet, and at least one computer capable of using that broadband access to view and interact with Web pages, handle email and other messaging, listen to audio, and view videos of at least YouTube quality .
  • Teenagers and most adults have some kind of mobile phone, and that phone usually has the capability to handle routine Internet tasks like viewing Web pages and reading email.
  • Colleges and universities have building and campus networks operating at broadband speeds of at least 10Mb/sec, and most have wireless networks operating at 802.11b (11Mb/sec) or greater speed.
  • Server capacity has become quite inexpensive, largely because “cloud” providers have figured out how to gain and then sell economy of scale.
  • Everyone – or at least everyone between the ages of, say, 12 and 65 – has at least one authenticated online identity, including email and other online service accounts; Facebook, Twitter, Google, or other social-media accounts; online banking, financial, or credit-card access; or network credentials from a school, college or university, or employer.
  • Everyone knows how to search on the Internet for material using Google, Bing, or other search engines.
  • Most people have a digital camera, perhaps integrated into their phone and capable of both still photos and videos, and they know how to send them to others or offload their photos onto their computers or an online service.
  • Most college and university course materials are in electronic form, and so is a large fraction of library and reference material used by the typical student.
  • Most colleges and universities have readily available facilities for creating video from lectures and similarly didactic events, whether in classrooms or in other venues, and for streaming or otherwise making that video available online.

It’s striking how many of these assumptions were invalid even as recently as five years ago. Most of the assumptions were invalid a decade before that (and it’s sobering to remember that the “3M” workstation was a lofty goal as recently as 1980 and cost nearly $10,000 in the mid-1980s, yet today’s iPhone almost exceeds the 3M spec).

Looking a bit into the future, here are some further assumptions that probably will be safe:

  • Typical home networking and computers will have improved to the point they can handle streamed video and simple two-way video interactions (which means that at least one home computer will have an add-on or built-in camera).
  • Most people will know how to communicate with individuals or small groups online through synchronous social media or messaging environments, in many cases involving video.
  • Authentication and monitoring technologies will exist to enable colleges and universities to reasonably ensure that their testing and assessment of student progress is protected from fraud.
  • Pretty much everyone will have the devices and accounts necessary for ubiquitous connectivity with anybody else and to use services from almost any college, university, or other educational provider.

Technology, Teaching, and Learning

In colleges and universities, as in other organizations, information technology can promote progress by enabling administrative processes to become more efficient and by creating diverse, flexible pathways for communication and collaboration within and across different entities. That’s organizational technology, and although it’s very important, it affects higher education much the way it affects other organizations of comparable size.

Somewhat more distinctively, information technology can become learning technology, an integral part of the teaching and learning process. Learning technology sometimes replaces traditional pedagogies and learning environments, but more often it enhances and expands them.

The basic technology and middleware infrastructure necessary to enable colleges and universities to reach, teach, and assess students appears to exist already, or will before long. This brings us to the next question: What applications turn information technology into learning technology?

To answer this, it’s useful to think about four overlapping functions of learning technology.

Amplify and Extend Traditional Pedagogies, Mechanisms, and Resources

For example, by storing and distributing materials electronically, by enabling lectures and other events to be streamed or recorded, and by providing a medium for one-to-one or collective interactions among faculty and students, IT potentially expedites and extends traditional roles and transactions. Similarly, search engines and network-accessible library and reference materials vastly increase faculty and students access. The effect, although profound, nevertheless falls short of transformational. Chairs outside faculty doors give way to “learning management systems” like Blackboard or Sakai or Moodle, wearing one’s PJs to 8am lectures gives way to watching lectures from one’s room over breakfast, and library schools become information-science schools. But the enterprise remains recognizable. Even when these mechanisms go a step further, enabling true distance education whereby students never set foot on campus (in 2011, 3.7% of all students took all their coursework through distance education), the resulting services remain recognizable. Indeed, they are often simply extensions of existing institutions’ campus programs.

Make Educational Events and Materials Available Outside the Original Context

For example, the Open Courseware initiative (OCW) started as publicly accessible repository of lecture notes, problem sets, and other material from MIT classes. It since has grown to include similar material from scores of other institutions worldwide. Similarly, the newer Khan Academy has collected a broad array of instructional videos on diverse topics, some from classes and some prepared especially for Khan, and made those available for anyone interested in learning the material. OCW, Khan, and initiatives like them provide instructional material in pure form, rather than as part of curricula or degree programs.

Enable Experience-Based Learning 

This most productively involves experience that otherwise might have been unaffordable, dangerous, or otherwise infeasible. Simulated chemistry laboratories and factories were an early example – students could learn to synthesize acetylene by trial and error without blowing up the laboratory, or to fine-tune just-in-time production processes without bankrupting real manufacturers. As computers have become more powerful, so have simulations become more complex and realistic. As simulations have moved to cloud-based servers, multi-user virtual environments have emerged, which go beyond simulation to replicate complex environments. Experiences like these were impossible to provide before the advent of powerful, inexpensive server clouds, ubiquitous networking, and graphically capable end-user devices.

Replace the Didactic Classroom Experience

This is the most controversial application of learning technology – “Why do we need faculty to teach calculus on thousands of different campuses, when it can be taught online by a computer?” – but also one that drives most discussion of how technology might transform higher education. It has emerged especially for disciplines and topics where instructors convey what they know to students through classroom lectures, readings, and tutorials. PLATO (Programmed Logic for Automated Teaching Operations) emerged from the University of Illinois in the 1960s as the first major example of computers replacing teachers, and has been followed by myriad attempts, some more successful than others, to create technology-based teaching mechanisms that tailor their instruction to how quickly students master material. (PLATO’s other major innovation was partnership with a commercial vendor, the now defunct Control Data Corporation.)

Higher Education

We now come to the $64 question: what role might trends in higher-education learning technology play in the potential transformation of higher education?

The transformational goal for higher education is to carry out its social and economic roles with greater efficiency and within the resource constraints. Many believe that such transformation requires a very different structure for future higher education. What might that structure be, and what role might information technologies play in its development?

The fundamental purpose of higher education is to advance society, polity, and the economy by increasing the social, political, and economic skills and knowledge of students – what economists call “human capital“. At the postsecondary level, education potentially augments students’ human capital four ways:

  • admission, which is to say declaring that a student has been chosen as somehow better qualified or more adaptable in some sense than other prospective students (this is part of Lester Thurow‘s “job queue” idea);
  • instruction, including core and disciplinary curricula, the essentially unidirectional transmission of concrete knowledge through lectures, readings, and like, and also the explication and amplification of that through classroom, tutorial, and extracurricular guidance and discussion (this is what we often mean by the narrow term “teaching”);
  • certification, specifically the measuring of knowledge and skill through testing and other forms of assessment; and
  • socialization, specifically learning how to become an effective member of society independently of one’s origin family, through interaction with faculty and especially with other students.

Sometimes a student gets all four together. For example, MIT marked me even before I enrolled as someone likely to play a role in technology (admission), taught me a great deal about science and engineering generally, electrical engineering in particular, and their social and economic context (instruction), documented through grades based on exams, lab work, and classroom participation that I had mastered (or failed to master) what I’d been taught (certification), and immersed me in an environment wherein data-based argument and rhetoric guided and advanced organizational life, and thereby helped me understand how to work effectively within organizations, groups, and society (socialization).

Most students attend college whose admissions processes amount to open admission, or involve simple norms rather than competition.  That is, anyone who meets certain standards, such as high-school completion with a given GPA or test score, is admitted. In 2010, almost half of all institutions reporting having no admissions criteria, and barely 11% accepted fewer than 1/4 of their applicants. Moreover, most students do not live on campus — in 2007-08, only 14% of undergraduates lived in college-owned housing. This means that most of higher education has limited admission and socialization effects. Therefore, for the most part higher education affects human capital through instruction and certification.

Instruction is an especially fertile domain for technological progress. This is because three trends converge around it:

  • ubiquitous connectivity, especially from students’ homes;
  • the rapidly growing corpus of coursework offered online, either as formal credit-bearing classes or as freestanding materials from entities like OCW or Khan; and
  • perhaps more speculative) the growing willingness of institutions to grant credit and allow students to satisfy requirements through classes taken at other institutions or through some kind of testing or assessment.

Indeed, we can imagine a future where it becomes commonplace for students to satisfy one institution’s degree requirements with coursework from many other institutions. Further down this road, we can imagine there might be institutions that admit students, prescribe curriculum, certify progress, and grant degrees – but have no instructional faculty and do not offer courses. This, in turn, might spawn purely instructional institutions.

One problem with such a future is that socialization, a key function of higher education, gets lost. This points the way to one major technology challenge for the future: Developing online mechanisms, for students who are scattered across the nation or the world, that provide something akin to rich classroom and campus interaction. Such interaction is central to the success of, for example, elite liberal-arts colleges and major residential universities. Many advocates of distance education believe that social media such as Facebook groups can provide this socialization, but that potential has yet to be realized.

A second problem with such a future is that robust, flexible methods for assessing student learning at a distance remain either expensive or insufficient. For example, ProctorU and Kryterion are two of several commercial entities that provide remote exam proctoring, but they do so through somewhat intensive use of video observation, and that only works for rather traditional written exams. For another example, in the aftermath of 9/11 many universities figured out how to conduct doctoral thesis defenses using high-bandwidth videoconferencing facilities rather than flying in faculty from other institutions, but this simply reduced travel expense rather than changed the basic idea that several faculty members would examine one student at a time.


If learning technologies are to transform higher education, we must exploit opportunities and address problems. At the same time, transformed higher education cannot neglect important dimensions of human capital. In that respect, our goal should be not only to make higher education more efficient than it is today, but also better.

Drivers headed for Millinocket rarely pull over any more to ask directions of drawling downeasters. Instead, they rely on the geographic position and information systems built into their cars or phones or computers, which in turn rely on network connectivity to keep maps and traffic reports up to date. To be sure, reliance on GPS and GIS tends to insulate drivers from interaction with the diversity they pass along the road, much as Interstate highways standardized cross-country travel. So the gain from those applications is not without cost.

The same is true for learning technology: it will yield both gains and losses. Effective progress will result only if we explore and understand the technologies and their applications, decide how these relate to the structure and goals of higher education, identify obstacles and remedies, and figure out how to get there from here.

IT Demography in Higher Education: Some Reminiscence & Speculation

In oversimplified caricature, many colleges and universities have traditionally staffed the line, management, and leadership layers of their IT enterprise thus:

Students with some affinity for technology (perhaps their major, perhaps work-study, perhaps just a side interest) have approached graduation not quite sure what they should do next. They’ve had some contact with the institution’s IT organizations, perhaps having worked for some part of them or perhaps having criticized their services. Whatever the reason, working for an institutional IT organization has seemed a useful way to pay the rent while figuring out what to do next, and it’s been a good deal for the IT organizations because recent graduates are usually pretty clever, know the institution well, learn fast, and are willing to work hard for relatively meager pay.

Moreover, and partly compensating for low pay, the technologies being used and considered in higher education often have been more advanced than those out in business, so sticking around has been a good way to be at the cutting edge technologically, and college and universities have tended to value and reward autonomy, curiosity, and creativity.

Within four or five years of graduation, most staff who come straight into the IT organization have figured out that it’s time to move on. Sometimes a romantic relationship has turned their attention to life plans and long-term earnings, sometimes ambition has taken more focused shape and so they seek a steeper career path, sometimes their interests have sharpened and readied them for graduate school — but in any case, they have left the campus IT organization for other pastures after a few good, productive years, and have been replaced by a new crop of recent graduates.

But a few individuals have found that working in higher education suits their particular hierarchy of needs (to adapt and somewhat distort Maslow). For them, IT work in higher education has yielded several desiderata (remember I’m still caricaturing here): there’s been job security, a stimulating academic environment, a relatively flat organization that offers considerable responsibility and flexibility, and an opportunity to work with and across state-of-the-art (and sometimes even more advanced) technologies. Benefits have been pretty good, even though pay hasn’t and there have been no stock options. Individuals to whom this mix appeals have stayed in campus IT, rising to middle-management levels, sometimes getting degrees in the process, and sometimes, as they have moved into #3 or #2 positions, even moving to other campuses as opportunities present themselves.

Higher-education IT leaders — that is, CIOs, the heads of major decentralized IT organizations, and in some cases the #2s within large central organizations — typically have come from one of two sources. Some have come from within higher-education IT organizations, sometimes the institution’s own but more typically, since a given institution usually has more leadership-ready middle managers than it has available leadership positions, another institution’s. (Whereas insiders once tended to be heavy-metal computer-center directors,  more recently they have come from academic technologies or networking.) Other leaders have come from faculty ranks, often (but not exclusively) in computer science or other technically-oriented disciplines. Occasionally some come from other sources, such as consulting firms or even technology vendors, or even from administration elsewhere in higher education.

The traditional approach staffs IT organizations with well educated, generally clever individuals highly attuned to the institution’s culture and needs. They are willing and able to tackle complex IT projects involving messy integration among different technologies. Those individuals also cost less that comparable ones would if hired from outside. Expected turnover among line staff notwithstanding, they are loyal to the institution even in the face of financial and management challenges.

But the traditional model also tilts IT organizations toward idiosyncrasy and patchwork rather than coherent architecture and efficiency-driven implementation. It often works against the adoption of effective management techniques, and it can promote hostility toward businesslike approaches to procurement and integration and indeed the entire commercial IT marketplace. All of this has been known, but in general institutions have continued to believe that the advantages of the traditional model outweigh its shortcomings.

I saw Moneyball in early October. I liked it mostly because it’s highly entertaining, it’s a good story, it’s well written, acted, directed, and produced, and it involves both applied statistical analysis (which is my training) and baseball (my son’s passion, and mine when the Red Sox are in the playoffs). I also liked it because its focus — dramatic change in how one staffs baseball teams — led me to think about college and university IT staffing. (And yes, I know my principles list says that “all sports analogies mislead”, but never mind.)

In one early scene, the Oakland A’s scouting staff explains to Brad Pitt’s character, Billy Beane, that choosing players depends on intuition honed by decades of experience with how the game is played, and that the approach Beane is proposing — choosing them based on how games are won rather than on intuition — is dangerous and foolhardy. Later, Arliss Howard’s character, the Red Sox owner John Henry, explains that whenever one goes against long tradition all hell breaks loose, and whoever pioneers or even advocates that change is likely to get bloodied.

So now I’ll move from oversimplification and caricature to speculation. To believe in the continued validity of the traditional staffing model may be to emulate the scouts in Moneyball. But to abandon the model is risky, since it’s not clear how higher-education IT can maintain its viability in a more “businesslike” model based on externally defined architectures, service models, and metrics. After all, Billy Beane’s Oakland A’s still haven’t won the World Series.

The Beane-like critique of the traditional model isn’t that the advantage/shortcoming balance has shifted, but rather that it depends on several key assumptions whose future validity is questionable. To cite four interrelated ones:

  • With the increasing sophistication of mobile devices and cloud-based services, the locus of technological innovation has shifted away from colleges and universities. Recent graduates who want to be in the thick of things while figuring out their life plans have much better options than staying on campus — they can intern at big technology firms, or join startups, or even start their own small businesses. In short, there is now competition for young graduates interested IT but unsure of their long-term plans.
  • As campuses have outsourced or standardized much of their IT, jobs that once included development and integration responsibility have evolved into operations, support, and maintenance — which are important, but not very interesting intellectually, and which provide little career development.  Increased outsourcing has exacerbated this, and so has increased reliance on business-based metrics for things like user support and business-based architectures for things like authentication and systems integration.
  • College and university IT departments could once offset this intellectual narrowing because technology prices were dropping faster than available funds, and the resulting financial cushion could be dedicated to providing staff with resources and flexibility to go beyond their specific jobs (okay, maybe what I mean is letting staff buy gadgets and play with them). But tightened attention to productivity and resource constraints have large eliminated the offsetting toys and flexibility. So IT jobs in colleges and universities have lost much of their nonpecuniary attractiveness, without any commensurate increase in compensation. Because of this, line staff are less likely to choose careers in college or university IT, and without this source of replenishment the higher-education IT management layer is aging.
  • As IT has become pervasively important to higher education, so responsibility for its strategic direction has broadened. As strategic direction has broadened, so senior leadership jobs, including the CIO’s, have evolved away from hierarchical control and toward collaboration and influence. (I’ve written about this elsewhere.) At the same time, increasing attention to business-like norms and metrics has required that IT leaders possess a somewhat different skillset than usually emerges from gradual promotion within college and university IT organizations or faculty experience. This has disrupted the supply chain for college and university IT leadership, as a highly fragmented group of headhunter firms competes to identify and recruit nontraditional candidates.

I think we’re already seeing dramatic change resulting from all this. The most obvious change is rapid standardization around commercial standards to enable outsourcing — which is appealing not only intrinsically, but because it reduces dependence on an institution’s own staff. (On the minus side, it also tends to emphasize proprietary commercial rather than open-source or open-standards approaches.) I also sense much greater interest in hiring from outside higher education, both at the line and management levels, and a concomitant reappraisal of compensation levels. That, combined with flat or shrinking resources, is eliminating positions, and the elimination of positions is promoting even more rapid standardization and outsourcing.

On the plus side, this is making college and university IT departments much more efficient and businesslike. On the minus side, higher education IT organizations may be losing their ability to innovate. This is yet another instance of the difficult choice facing us in higher-education IT: Is IT simply an important, central element of educational, research, and administrative infrastructure, or is IT also the vehicle for fundamental change in how higher education works? (In Moneyball, the choice is between player recruitment as a mechanism for generating runs, and as a mechanism for exciting fans. Sure, Red Sox fans want to win. But were they more avid before or after the Curse ended with Bill James’s help?)

If it’s the latter, we need to make sure we’re equipped to enable that — something that neither the traditional model nor the evolving “businesslike” model really does.




Institutional Demography in Higher Education: A Reminder

To understand why policy debates sometimes seem to make no sense, to circle endlessly, or to become bafflingly confused, it’s important to remember that the demography of higher education isn’t politically straightforward. By “demography” I don’t mean Gen X, Gen Y, and echo booms, but rather straightforward counts of degree-granting institutions and students. And by “politically” I don’t mean Republicans and Democrats, but rather the relative importance of different constituencies with different resources and goals.

Here’s a graph (I’ll append a more detailed table at the end). The data come from the National Center for Educational Statistics 2008 IPEDS surveys. They describe the 4,474 public and private degree-granting institutions in the United States, classified into the usual Carnegie categories. I’ve collapsed Carnegie and size categories:  ”Small” means enrollment under 2,500, and “Large” means enrollment of 20,000 or more. The categories whose labels I’ve italicized are mostly private, those I’ve underscored are mostly public, and those I’ve both italicized and underscored are split between public and private institutions.

Most of us know some key demographic facts about higher education — for example, that the largest group of students is in 2-year colleges, followed closely by research universities. We also know that an awful lot of commentary and influence in higher education comes from people in or connected with research universities, and therefore many of us have trouble thinking about other kinds of institutions, let alone new kinds.

Here are some things we tend to forget:

  • There really aren’t very many research and doctoral universities — they account for fewer than 10% of institutions even though they enroll over 25% of all students.
  • Although there are lots of big community colleges and they enroll lots of students, not all 2-year colleges are big community colleges; rather, more than half of them are small, and most of those are private.
  • Most small 4-year and master’s institutions are also private, and although they comprise almost 20% of all institutions, they enroll only 5% of all students.
  • There are a lot of specialized institutions — that is, freestanding business, health, medical, engineering, technical, design, theological, and other similar institutions — but they don’t enroll very many students.
  • Enrollment isn’t quite a Pareto distribution (that’s the classic 20-80 rule), but it’s pretty close: 33% of institutions enroll 80% of the students.

What this tells us is that the politics of higher education — and, indeed, the politics of organizations, like my own EDUCAUSE, that try to represent all of higher education — are very different depending on whether we focus on students or on institutions.

If we focus on students, the politics are pretty straightforward. Big community colleges, big master’s institutions, and doctoral and research universities count, and all other institutions don’t. The group that counts is mostly public institutions, so state governments and state system offices also count. Research and doctoral universities employ lots of faculty to whom research is as important as teaching, and who are vocal about its importance, so disciplinary groups and research funders are also relevant.

From the enrollment perspective, how higher education evolves depends critically on what happens in big community colleges and in research and doctoral universities, since that’s where students are. Conversely, unless those institutions adapt to what students expect, we can expect cataclysmic change in higher education.

But community colleges and universities are at opposite ends of the cultural spectrum. To give just two examples, the former rely heavily on faculty hired ad hoc to teach specific courses, the latter rely on tenured or tenure-track faculty, and the former have no interest in research productivity or eminence whereas the latter stake their reputations on it. So the two most important sectors (in the enrollment sense) often are misaligned if not at odds about policy choices, and the changes they contemplate and implement are likely to be divergent rather than synergistic.

The other 3,000 institutions are different. Of the 4,474 institutions, almost 2/3 are private, and almost 2/3 are small, with lots of overlap: just over half of all institutions are small and private. If we focus on institutions rather than enrollment, we attend to a very large number of small, private institutions that often have different missions and challenges, typically do not work together, and, with a few exceptions, are not organized or collectively vocal.

For these institutions, the difference between survival and demise can depend on tiny changes in enrollment or financial aid or even audit policies, since their small size denies them the operating cushions and economies of scale available to their larger and public counterparts. This also means that these institutions have no excess resources to invest in innovation, so they are unlikely to adapt to changing student needs.

In a sense, focusing on enrollment tends to yield interesting and strategic (if conflicting) attention to the future, whereas focusing on institutions tends to balance (if not replace) this with a focus on tactical survival and the intricacies of current policy.

But my point isn’t about specific policy options or imperatives. Rather, it’s this: what’s important varies dramatically depending whether we focus on institutions or students. And that, I think, not only contributes to the complexity of our conversations within the status quo of higher education, but also complicates thinking about its future.

Detailed Table

Degree-Granting Institutions by Type, Control, and Size, IPEDS 2008 Data